Автор работы: Пользователь скрыл имя, 01 Июня 2013 в 12:58, реферат
Термин информация происходит от латинского слова informatio, что означает «сведения, разъяснения, изложение». Информация - это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В это слово вкладывается различный смысл в технике, науке и в житейских ситуациях. В обиходе информацией называют любые данные или сведения, которые кого-либо интересуют, например сообщение о каких-либо событиях, о чьей-либо деятельности и т. п. «Информировать» в этом смысле означает «сообщить нечто, неизвестное раньше».
1. ПОНЯТИЕ И СВОЙСТВА ИНФОРМАЦИИ, ЕЕ ВИДЫ
1.1. ПОНЯТИЕ ИНФОРМАЦИИ
1.2. СВОЙСТВА ИНФОРМАЦИИ
1.3. КЛАССИФИКАЦИЯ ИНФОРМАЦИИ
1.4. ЕДИНИЦЫ КОЛИЧЕСТВА ИНФОРМАЦИИ: ВЕРОЯТНОСТНЫЙ И ОБЪЕМНЫЙ ПОДХОДЫ
В случае, когда вероятности Pi результатов опыта (в примере, приведенном выше -- бросания игральной кости) неодинаковы, имеет место формула Шеннона
.
В случае равновероятности событий , и формула Шеннона переходит в формулу Хартли.
В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака «пробел» для разделения слов. По формуле Хартли H = log2 34 ~ 5.09 бит.
Однако, в словах русского языка (равно как и в словах других языков) различные буквы встречаются неодинаково часто. Ниже приведена табл. 3 вероятностей частоты употребления различных знаков русского алфавита, полученная на основе анализа очень больших по объему текстов.
Воспользуемся для подсчета H формулой Шеннона: H ~ 4.72 бит. Полученное значение H, как и можно было предположить, меньше вычисленного ранее. Величина H, вычисляемая по формуле Хартли, является максимальным количеством информации, которое могло бы приходиться на один знак. Аналогичные подсчеты H можно провести и для других языков, например, использующих латинский алфавит -- английского, немецкого, французского и др. (26 различных букв и «пробел»). По формуле Хартли получим H = log2 27 ~ 4.76 бит.
Таблица 1. Частотность букв русского языка
i |
Символ |
P(i) |
I |
Символ |
P(i) |
I |
Символ |
P(i) |
1 |
_ |
0.175 |
12 |
Л |
0.035 |
23 |
Б |
0.014 |
2 |
О |
0.090 |
13 |
К |
0.028 |
24 |
Г |
0.012 |
3 |
Е |
0.072 |
14 |
М |
0.026 |
25 |
Ч |
0.012 |
4 |
Ё |
0.072 |
15 |
Д |
0.025 |
26 |
Й |
0.010 |
5 |
А |
0.062 |
16 |
П |
0.023 |
27 |
Х |
0.009 |
6 |
И |
0.062 |
17 |
У |
0.021 |
28 |
Ж |
0.007 |
7 |
T |
0.053 |
18 |
Я |
0.018 |
29 |
Ю |
0.006 |
8 |
H |
0.053 |
19 |
Ы |
0.016 |
30 |
Ш |
0.006 |
9 |
C |
0.045 |
20 |
З |
0.016 |
31 |
Ц |
0.004 |
10 |
P |
0.040 |
21 |
Ь |
0.014 |
32 |
Щ |
0.003 |
11 |
B |
0.038 |
22 |
Ъ |
0.014 |
33 |
Э |
0.003 |
34 |
Ф |
0.002 |
Рассмотрим алфавит, состоящий из двух знаков 0 и 1. Если считать, что со знаками 0 и 1 в двоичном алфавите связаны одинаковые вероятности их появления (P(0)=P(1)= 0.5), то количество информации на один знак при двоичном кодировании будет равно
H = log2 2 = 1 бит.
Таким образом, количество информации (в битах), заключенное в двоичном слове, равно числу двоичных знаков в нем.
Объемный подход
В двоичной системе счисления знаки 0 и 1 называют битами (от английского выражения Binary digiTs -- двоичные цифры). В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).
Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один байт информации. 1024 байта образуют килобайт (Кбайт), 1024 килобайта -- мегабайт (Мбайт), а 1024 мегабайта -- гигабайт (Гбайт).
Между вероятностным и объемным количеством информации соотношение неоднозначное. Далеко не всякий текст, записанный двоичными символами, допускает измерение объема информации в вероятностном (кибернетическом) смысле, но заведомо допускает его в объемном. Далее, если некоторое сообщение допускают измеримость количества информации в обоих смыслах, то это количество не обязательно совпадает, при этом кибернетическое количество информации не может быть больше объемного. В прикладной информатике практически всегда количество информации понимается в объемном смысле. Как ни важно измерение информации, нельзя сводить к нему все связанные с этим понятием проблемы. При анализе информации социального (в широким смысле) происхождения на первый план могут выступить такие ее свойства как истинность, своевременность, ценность, полнота и т.д. Их невозможно оценить в терминах «уменьшение неопределенности» (вероятностный подход) или числа символов (объемный подход). Обращение к качественной стороне информации породило иные подходы к ее оценке. При аксиологическом подходе стремятся исходить из ценности, практической значимости информации, т.е. качественных характеристик, значимых в социальной системе. При семантическом подходе информация рассматривается как с точки зрения формы, так и содержания. При этом информацию связывают с тезаурусом, т.е. полнотой систематизированного набора данных о предмете информации. Отметим, что эти подходы не исключают количественного анализа, но он становится существенно сложнее и должен базироваться на современных методах математической статистики.
Понятие информации нельзя считать лишь техническим, междисциплинарным и даже наддисциплинарным термином. Информация -- это фундаментальная философская категория. Дискуссии ученых о философских аспектах информации надежно показали несводимость информации ни к одной из этих категорий. Концепции и толкования, возникающие на пути догматических подходов, оказываются слишком частными, односторонними, не охватывающими всего объема этого понятия.
Попытки рассмотреть категорию информации с позиций основного вопроса философии привели к возникновению двух противостоящих концепций -- так называемых, функциональной и атрибутивной. «Атрибутисты» квалифицируют информацию как свойство всех материальных объектов, т.е. как атрибут материи. «Функционалисты» связывают информацию лишь с функционированием сложных, самоорганизующихся систем. Можно попытаться дать философское определение информации с помощью указания на связь определяемого понятия с категориями отражения и активности. Информация есть содержание образа, формируемого в процессе отражения. Активность входит в это определение в виде представления о формировании некоего образа в процессе отражения некоторого субъект-объектного отношения. При этом не требуется указания на связь информации с материей, поскольку как субъект, так и объект процесса отражения могут принадлежать как к материальной, так и к духовной сфере социальной жизни. Однако существенно подчеркнуть, что материалистическое решение основного вопроса философии требует признания необходимости существования материальной среды -- носителя информации в процессе такого отражения. Итак, информацию следует трактовать как имманентный (неотъемлемо присущий) атрибут материи, необходимый момент ее самодвижения и саморазвития. Эта категория приобретает особое значение применительно к высшим формам движения материи -- биологической и социальной. Известно большое количество работ, посвященных физической трактовке информации. Эти работы в значительной мере построены на основе аналогии формулы Больцмана, описывающей энтропию статистической системы материальных частиц, и формулы Хартли. Соответствующие материалы можно найти в литературе, отраженной в приведенном ниже перечне. Информацию следует считать особым видом ресурса, при этом имеется в виду толкование «ресурса» как запаса неких знаний материальных предметов или энергетических, структурных или каких-либо других характеристик предмета. В отличие от ресурсов, связанных с материальными предметами, информационные ресурсы являются неистощимыми и предполагают существенно иные методы воспроизведения и обновления, чем материальные ресурсы. В связи с таким взглядом центральными становятся следующие свойства информации: запоминаемость, передаваемость, преобразуемость, воспроизводимость, стираемость. Подводя итог сказанному, отметим, что предпринимаются (но отнюдь не завершены) усилия ученых, представляющих самые разные области знания, построить единую теорию, которая призвана формализовать понятие информации и информационного процесса, описать превращения информации в процессах самой разной природы. Движение информации есть сущность процессов управления, которые суть проявление имманентной активности материи, ее способности к самодвижению. С момента возникновения кибернетики управление рассматривается применительно ко всем формам движения материи, а не только к высшим (биологической и социальной). Многие проявления движения в неживых -- искусственных (технических) и естественных (природных) -- системах также обладают общими признаками управления, хотя их исследуют в химии, физике, механике в энергетической, а не в информационной системе представлений. Информационные аспекты в таких системах составляют предмет новой междисциплинарной науки -- синергетики. Высшей формой информации, проявляющейся в управлении в социальных системах, являются знания. Это наддисциплинарное понятие, широко используемое в педагогике и исследованиях по искусственному интеллекту, также претендует на роль важнейшей философской категории. В философском плане познание следует рассматривать как один из функциональных аспектов управления. Такой подход открывает путь к системному пониманию генезиса процессов познания, его основ и перспектив.