Автор работы: Пользователь скрыл имя, 10 Января 2013 в 07:29, дипломная работа
Объектом исследования данной выпускной квалификационной работы являются персональные компьютеры.
Предметом исследования является анализ тенденций развития персональных компьютеров.
Целью выполнения данной выпускной квалификационной работы является анализ перспектив развития персональных компьютеров.
ВВЕДЕНИЕ 3
1 ПОЯВЛЕНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ 6
ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ 6
1.1 Понятие, виды и структура персональных компьютеров 9
1.2 Этапы развития персонального компьютера 15
2 ПРОБЛЕМЫ И ПЕРСПЕКТИВЫФ РАЗВИТИЯ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ 19
2.1 Роль ПК в современной жизни 19
2.2 Ограниченные возможности современных компьютеров 31
2.3 Тенденции развития персональных компьютеров 35
2.4 Компьютеры будущего 39
3 КВАНТОВЫЕ КОМПЬЮТЕРЫ 46
3.1 Необходимость создания квантового компьютера 46
3.2 Структура квантового компьютера 51
3.3 Практическое применение квантовых компьютеров 57
3.4 Физические реализации квантовых компьютеров 60
ЗАКЛЮЧЕНИЕ 67
Глоссарий 72
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИ
В 1996 году коллега Шора по работе в LucentTechnologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных – телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.
Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема – ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических. Пути решения этой проблемы наметил в 1995 году П. Шор, разработав схему кодирования квантовых состояний и коррекции в них ошибок. К сожалению, тема коррекции ошибок в квантовых компьютерах так же важна, как и сложна, чтобы изложить ее в данной статье.
Для понимания законов квантового мира не следует прямо опираться на повседневный опыт. Обычным образом (в житейском понимании) квантовые частицы ведут себя лишь в том случае, если мы постоянно «подглядываем» за ними, или, говоря более строго, постоянно измеряем, в каком состоянии они находятся. Но стоит нам «отвернуться» (прекратить наблюдение), как квантовые частицы тут же переходят из вполне определенного состояния сразу в несколько различных ипостасей. То есть электрон (или любой другой квантовый объект) частично будет находиться в одной точке, частично в другой, частично в третьей и т.д. Это не означает, что он делится на дольки, как апельсин. Тогда можно было бы надежно изолировать какую-нибудь часть электрона и измерить ее заряд или массу.
Но опыт показывает, что после измерения электрон всегда оказывается «целым и невредимым» в одной единственной точке, несмотря на то, что до этого он успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называют суперпозицией квантовых состояний и описывают обычно волновой функцией, введенной в 1926 году немецким физиком Э. Шредингером.
Модуль значения волновой функции в любой точке, возведенный в квадрат, определяет вероятность найти частицу в этой точке в данный момент. После измерения положения частицы ее волновая функция как бы стягивается (коллапсирует) в ту точку, где частица была обнаружена, а затем опять начинает расплываться. Свойство квантовых частиц быть одновременно во многих состояниях, называемое квантовым параллелизмом, успешно используется в квантовых вычислениях.
Чтобы использовать квантовую схему для вычисления, нужно уметь вводить входные данные, проделывать вычисления и считывать результат. Поэтому принципиальная схема любого квантового компьютера (см. рисунок 3.1) должна включать следующие функциональные блоки: квантовый регистр для ввода данных, квантовый процессор для преобразования данных и устройство для считывания данных.
Квантовый регистр представляет собой совокупность некоторого числа Lкубитов. До ввода информации в компьютер все кубиты квантового регистра должны быть приведены в базисные состояния |0 . Эта операция называется подготовкой, или инициализацией. Далее определенные кубиты (не все) подвергаются селективному внешнему воздействию (например, с помощью импульсов внешнего электромагнитного поля, управляемых классическим компьютером), которое изменяет значение кубитов, то есть из состояния |0 они переходят в состояние |1 . При этом состояние всего квантового регистра перейдет в суперпозицию базисных состояний |nс, то есть состояние квантового регистра в начальный момент времени будет определяться функцией:
Понятно, что данное состояние суперпозиции можно использовать для бинарного (двоичного) представления числа n.
В квантовом процессоре введенные данные подвергаются последовательности квантовых логических операций, которые с математической точки зрения описываются унитарным преобразованием , действующим на состояние всего регистра. В результате через некоторое количество тактов работы квантового процессора исходное квантовое состояние системы становится новой суперпозицией вида:
Говоря о квантовом процессоре, нужно сделать одно важное замечание. Оказывается, для построения любого вычисления достаточно всего двух базовых логических булевых операций. С помощью базовых квантовых операций можно имитировать работу обычных логических элементов, из которых сделаны компьютеры. Поскольку законы квантовой физики на микроскопическом уровне являются линейными и обратимыми, то и соответствующие квантовые логические устройства, производящие операции с квантовыми состояниями отдельныхкубитов (квантовые вентили), оказываются логически и термодинамически обратимыми. Квантовые вентили аналогичны соответствующим обратимым классическим вентилям, но, в отличие от них, способны совершать унитарные операции над суперпозициями состояний. Выполнение унитарных логических операций над кубитами предполагается осуществлять с помощью соответствующих внешних воздействий, которыми управляют классические компьютеры.
Рис. 3.1 Схематическая структура квантового компьютера
После реализации преобразований в квантовом компьютере новая функция суперпозиции представляет собой результат вычислений в квантовом процессоре. Остается лишь считать полученные значения, для чего производится измерение значения квантовой системы. В итоге образуется последовательность нулей и единиц, причем, в силу вероятностного характера измерений, она может быть любой. Таким образом, квантовый компьютер может с некоторой вероятностью дать любой ответ. При этом квантовая схема вычислений считается правильной, если правильный ответ получается с вероятностью, достаточно близкой к единице. Повторив вычисления несколько раз и выбрав тот ответ, который встречается наиболее часто, можно снизить вероятность ошибки до сколь угодно малой величины.
Для того чтобы понять, чем различаются в работе классический и квантовый компьютеры, давайте вспомним, что классический компьютер хранит в памяти L бит, которые за каждый такт работы процессора подвергаются изменению. В квантовом компьютере в памяти (регистр состояния) хранятся значения Lкубитов, однако квантовая система находится в состоянии, являющемся суперпозицией всех базовых 2L состояний, и изменение квантового состояния системы, производимое квантовым процессором, касается всех 2L базовых состояний одновременно. Соответственно в квантовом компьютере вычислительная мощность достигается за счет реализации параллельных вычислений, причем теоретически квантовый компьютер может работать в экспоненциальное число раз быстрее, чем классическая схема.
Считается, что для реализации полномасштабного квантового компьютера, превосходящего по производительности любой классический компьютер, на каких бы физических принципах он ни работал, следует обеспечить выполнение следующих основных требований:
– физическая система, представляющая собой полномасштабный квантовый компьютер, должна содержать достаточно большое число L>103 хорошо различимых кубитов для выполнения соответствующих квантовых операций;
– необходимо обеспечить максимальное подавление эффектов разрушения суперпозиции квантовых состояний, обусловленных взаимодействием системы кубитов с окружающей средой, в результате чего может стать невозможным выполнение квантовых алгоритмов. Время разрушения суперпозиции квантовых состояний (время декогерентизации) должно по крайней мере в 104 раз превышать время выполнения основных квантовых операций (время такта). Для этого система кубитов должна быть довольно слабо связана с окружением;
– необходимо обеспечить измерение с достаточно высокой надежностью состояния квантовой системы на выходе. Измерение конечного квантового состояния является одной из основных проблем квантовых вычислений.
Основные проблемы, связанные с созданием и применением квантовых компьютеров:
– необходимо обеспечить высокую точность измерений;
– внешние воздействия
могут разрушить квантовую
Благодаря огромной скорости разложения на простые множители, квантовый компьютер позволит расшифровывать сообщения, зашифрованные при помощи популярного асимметричного криптографического алгоритма RSA. До сих пор этот алгоритм считается сравнительно надёжным, так как эффективный способ разложения чисел на простые множители для классического компьютера в настоящее время неизвестен. Для того, например, чтобы получить доступ к кредитной карте, нужно разложить на два простых множителя число длиной в сотни цифр. Даже для самых быстрых современных компьютеров выполнение этой задачи заняло бы больше времени, чем возраст Вселенной, в сотни раз. Благодаря алгоритму Шора эта задача становится вполне осуществимой, если квантовый компьютер будет построен.
Применение идей квантовой механики уже открыли новую эпоху в области криптографии, так как методы квантовой криптографии открывают новые возможности в области передачи сообщений. Прототипы систем подобного рода находятся на стадии разработки.
Построение квантового компьютера в виде реального физического прибора является фундаментальной задачей физики XXI века. В настоящее время построены только ограниченные его варианты (в пределах 10 кубит). Вопрос о том, до какой степени возможно масштабирование такого устройства, является предметом новой интенсивно развивающейся области – многочастичной квантовой механики. Центральным здесь является вопрос о природе декогерентности (точнее, о коллапсе волновой функции), который пока остается открытым.
Для практического применения
пока не создано ни одного квантового
компьютера, который бы удовлетворял
всем вышеперечисленным условиям. Однако
во многих развитых странах разработке
квантовых компьютеров
На данный момент наибольший квантовый компьютер составлен всего из семи кубитов. Этого достаточно, чтобы реализовать алгоритм Шора и разложить число 15 на простые множители 3 и 5.
Если же говорить о возможных моделях квантовых компьютеров, то их, в принципе, довольно много. Первый квантовый компьютер, который был создан на практике, – это импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения, хотя он, конечно же, как квантовый компьютер не рассматривался. Лишь когда появилась концепция квантового компьютера, ученые поняли, что ЯМР-спектрометр представляет собой вариант квантового компьютера.
В ЯМР-спектрометре спины ядер исследуемой молекулы образуют кубиты. Каждое ядро имеет свою частоту резонанса в данном магнитном поле. При воздействии импульсом на ядро на его резонансной частоте оно начинает эволюционировать, остальные же ядра не испытывают никакого воздействия. Для того чтобы заставить эволюционировать другое ядро, нужно взять иную резонансную частоту и дать импульс на ней. Таким образом, импульсное воздействие на ядра на резонансной частоте представляет собой селективное воздействие на кубиты. При этом в молекуле есть прямая связь между спинами, поэтому она является идеальной заготовкой для квантового компьютера, а сам спектрометр представляет собой квантовый процессор.
Первые эксперименты на ядерных спинах двух атомов водорода в молекулах 2,3-дибромотиофена SCH:(CBr)2:CH и на трех ядерных спинах – одном в атоме водорода H и двух в изотопах углерода 13C в молекулах трихлорэтилена CCl2:CHCl – были поставлены в 1997 году в Оксфорде (Великобритания). В случае использования ЯМР-спектрометра важно, что для селективного воздействия на ядерные спины молекулы необходимо, чтобы они заметно различались по резонансным частотам. Позднее были осуществлены квантовые операции в ЯМР-спектрометре с числом кубитов 3, 5, 6 и 7.
Главным преимуществом ЯМР-спектрометра является то, что в нем можно использовать огромное количество одинаковых молекул. При этом каждая молекула (точнее, ядра атомов, из которых она состоит) представляет собой квантовую систему. Последовательности радиочастотных импульсов, выполняющие роль определенных квантовых логических вентилей, осуществляют унитарные преобразования состояний соответствующих ядерных спинов одновременно для всех молекул. То есть селективное воздействие на отдельный кубит заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого (bulk-ensemblequantumcomputer) ЯМР квантового компьютера. Такие компьютеры могут работать при комнатной температуре, а время декогерентизации квантовых состояний ядерных спинов составляет несколько секунд.
В области ЯМР квантовых
компьютеров на органических жидкостях
к настоящему времени достигнуты
наибольшие успехи. Они обусловлены
в основном хорошо развитой импульсной
техникой ЯМР-спектроскопии, обеспечивающей
выполнение различных операций над
когерентными суперпозициями состояний
ядерных спинов, и возможностью использования
для этого стандартных ЯМР-
Информация о работе Перспективы развития персональных компьютеров