Перспективы развития микропроцессоров

Автор работы: Пользователь скрыл имя, 10 Октября 2014 в 11:04, дипломная работа

Краткое описание

На сегодняшний день микропроцессоры составляют основу компьютерной техники, и переход к новым поколениям вычислительных средств приобретает особую актуальность. Это связано с потребностями решения сложных задач больших размерностей. Непрерывный рост характеристик требует разработки и создания принципиально новых вычислительных средств для поддержки их эффективного функционирования.
Быстродействие компьютера зависит, прежде всего, от того, какой центральный процессор в нем установлен. Какие бы задачи пользователь не ставил перед системой, процессор играет в них основную роль, и если он достаточно производителен, то работа с компьютером будет продуктивной и комфортной.

Содержание

Введение……………………………………………………………..…..……...…...3
Глава 1 Развитие и производство микропроцессоров……………….……..…...6
1.1 Определение и функции микропроцессора………………………...……...6
1.2 Эволюция процессоров……………………………………………....……10
1.3 Основные направления развития микропроцессоров………….…….....11
1.4 Поколения процессоров……………………………………………..….....14
1.5 Технология производства………………………………………..…..……17
1.6 Технологические этапы производства микропроцессоров…..…..….....22
Глава 2 Перспективы развития микропроцессоров……………………...…...28
2.1 Ближайшее будущее микропроцессоров……………………….…..……..28
2.2 Нанотехнологии………………………………………………….….….…...38
Глава 3 Сравнительные характеристики процессоров…………….…..….....45
3.1 Процессоры Intel на ядре Clarkdale…………………………….…….…...45
3.2 Процессоры AMD………………………………………………….……….46
Заключение………………………………………………………………....……54
Глоссарий………………………………………………….…….………………57
Список использованных источников……………………….….…….………..60

Прикрепленные файлы: 1 файл

Перспективы развития микропроцессоров.docx

— 570.51 Кб (Скачать документ)

Содержание

Введение……………………………………………………………..…..……...…...3

Глава 1 Развитие и производство микропроцессоров……………….……..…...6

1.1 Определение и функции микропроцессора………………………...……...6

1.2 Эволюция процессоров……………………………………………....……10

1.3 Основные направления развития микропроцессоров………….…….....11

1.4 Поколения процессоров……………………………………………..….....14

1.5 Технология производства………………………………………..…..……17

1.6 Технологические этапы производства микропроцессоров…..…..….....22

Глава 2 Перспективы развития микропроцессоров……………………...…...28

2.1 Ближайшее будущее микропроцессоров……………………….…..……..28

2.2 Нанотехнологии………………………………………………….….….…...38

Глава 3 Сравнительные характеристики процессоров…………….…..….....45

3.1 Процессоры Intel на ядре Clarkdale…………………………….…….…...45

3.2 Процессоры AMD………………………………………………….……….46

Заключение………………………………………………………………....……54

Глоссарий………………………………………………….…….………………57

Список использованных источников……………………….….…….………..60

Приложения ……………………………………………….……….….………..63

 

 

 

 

 

 

 

 

 

 

Введение

 

Актуальность. На сегодняшний день микропроцессоры составляют основу компьютерной техники, и переход к новым поколениям вычислительных средств приобретает особую актуальность. Это связано с потребностями решения сложных задач больших размерностей. Непрерывный рост характеристик требует разработки и создания принципиально новых вычислительных средств для поддержки их эффективного функционирования.

Быстродействие компьютера зависит, прежде всего, от того, какой центральный процессор в нем установлен. Какие бы задачи пользователь не ставил перед системой, процессор играет в них основную роль, и если он достаточно производителен, то работа с компьютером будет продуктивной и комфортной. Если же скорости процессора не хватает, то есть риск, что рабочий процесс превратится в нервотрепку как для рядового пользователя, так и для сотрудника научно-исследовательского центра.

Тактовая частота процессора является одной из основных характеристик, но далеко не единственной. К примеру, такая характеристика, как технологический процесс производства (проектная норма процессора), определяет структурный размер тех элементов, из которых состоит процессор. В частности, от него напрямую зависят размеры транзисторов и их характеристики (длина затвора, время переключения, энергопотребление и т.д.)1 

Величина транзисторов в персональных компьютерах, выпущенных IBM в 1983 году, составляла 10 мкм (микрометров). Сегодня их характерный размер - 0,25 мкм. За это же время тактовая частота процессоров возросла более чем в 50 раз, а плотность транзисторов на кристалле увеличилась в 20 раз.2

Полупроводниковая индустрия обладает уникальной способностью поддерживать очень высокие темпы технологического развития на протяжении долгого периода времени. Это позволяет производителям из года в год снижать цены на свои продукты, одновременно увеличивая их быстродействие и расширяя функциональность. Но бесконечное увеличение скорости вряд ли возможно, ведь существуют чисто физические ограничения. Тем не менее, сотни исследователей, представляющих самые различные организации, упорно трудятся, пытаясь преодолеть технологические барьеры.

Цель выпускной квалификационной работы:

- перечислить и рассмотреть современные достижения в развитии микропроцессоров;

- проанализировать направления  развития микропроцессоров;

- выделить новые технологии  производства микропроцессоров;

- дать обзор прогнозов  развития микропроцессорной техники.

Объект исследования - развитие микропроцессоров в обозримом будущем: направления и технологии.

Предмет исследования - технологии производства микропроцессоров в настоящем и ближайшем будущем, пути развития современных процессоров, развитие концепции двухъядерных и многоядерных процессоров и ее реализации, совершенствование архитектур микропроцессоров, анализ перспектив развития процессоров ведущими фирмами производителями и их планы.

Исследование основывается на общенаучных методах познания: обобщение и систематизация теоретических данных; сравнение, анализ, синтез, изучение и обработка данных эмпирики; построение научных гипотез; моделирование выводов исследования и их классификация.

Возможность достижения высоких частот работы современных микропроцессоров напрямую зависит от количества транзисторов. Однако, ее проектирование усложняется факторами, отражающими современные тенденции в полупроводниковой индустрии:

• Переход к новым технологиям. Уменьшение технологических размеров приводит к росту неточности контроля над размерами структур на кристалле в процессе изготовления, негативно влияющих на производительность.

• Увеличение степени интеграции приводит к росту флуктуаций напряжения питания и наводок, увеличению нагрузки на процессор и удлинению пути распространения сигнала.

В конечном итоге эти факторы приводят к снижению производительности микропроцессора и к увеличению накладных расходов на организацию архитектуры. Требуется более сложная методология разработки, которая позволит увеличить мощность и быстродействие.

В практической части выпускной квалификационной работы показаны результаты комплексного анализа процессоров фирм AMD и Intel.

 

 

Глава 1. Развитие и производство микропроцессоров

 

1.1 Определение и функции микропроцессора

Микропроцессор – центральное устройство (или комплекс устройств) ЭВМ (или вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования информации, управляет вычислительным процессом и координирует работу устройств системы (запоминающих, сортировальных, ввода – вывода, подготовки данных и др.). В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называют многопроцессорными. Наличие нескольких процессоров ускоряет выполнение одной большой или нескольких (в том числе взаимосвязанных) программ. Основными характеристиками микропроцессора являются: быстродействие и разрядность.

Быстродействие – это число выполняемых операций в секунду. Разрядность характеризует объём информации, который микропроцессор обрабатывает за одну операцию: 8-разрядный процессор за одну операцию обрабатывает 8 бит информации, 32-разрядный – 32 бита и 64 разрядные – 64 бита. Скорость работы микропроцессора во многом определяет быстродействие компьютера. Микропроцессор выполняет всю обработку данных, поступающих в компьютер и хранящихся в его памяти, под управлением программы, также хранящейся в памяти. Персональные компьютеры оснащают центральными процессорами различных мощностей. Микропроцессор, самостоятельное или входящее в состав микро-ЭВМ устройство обработки информации, выполненное в виде одной или нескольких больших интегральных схем. Микропроцессор и устройства вычислительной техники и автоматики, выполненные на их основе. Микропроцессорная техника применяется в системах автоматического управления технологическим и контрольно-испытательным оборудованием, в космических аппаратах, транспортных средствах, бытовых приборах и т.д. Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, этот термин естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура. Ранние ЦП создавались в виде уникальных составных частей для единственных в своём роде компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода / вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще  даже значительно превосходят их показатели. Физическая структура микропроцессора достаточно сложна. Ядро процессора содержит главный управляющий и исполняющие модули – блоки выполнения операций над целочисленными данными. К локальным управляющим схемам относятся: блок плавающей запятой, модуль предсказания ветвлений, модуль преобразования CISC-инструкций во внутренний RISC-микрокод, регистры микропроцессорной памяти (в МП типа VLIW до 256 регистров), регистры кэш памяти 1-го уровня (отдельно для данных и инструкций), шинный интерфейс и многое другое.

Функции процессора:

1. Обработка данных по заданной программе путем выполнения арифметических и логических операций;

2. Программное управление работой устройств компьютера.

Модели процессоров включают следующие совместно работающие устройства:

1) Устройство управления (УУ). Осуществляет координацию работы  всех остальных устройств, выполняет  функции управления устройствами, управляет вычислениями в компьютере.

2) Арифметико-логическое устройство (АЛУ). Так называется устройство для целочисленных операций.

КЭШ-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале.

КЭШ первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов. КЭШ второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня. КЭШ второго уровня (L2 cache).

Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня. Основная память. Намного больше по объёму, чем кэш-память, и значительно менее быстродействующая. Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти  повыситься только на 10–15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не поднимет общую производительность работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками. КЭШ-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

Информация о работе Перспективы развития микропроцессоров