Особенности строения первых ЭВМ

Автор работы: Пользователь скрыл имя, 28 Марта 2014 в 17:16, реферат

Краткое описание

Цель работы: изучить особенности строения первых ЭВМ.
Для достижения поставленной цели, мною были сформулированы следующие задачи:
1) Раскрыть понятие ЭВМ
Раскрыть особенности строения первых ЭВМ согласно условно выделяемым поколениям их развития

Содержание

Введение 3
Поколения ЭВМ 5
Первое поколение ЭВМ 5
Второе поколение ЭВМ 8
Третье поколение ЭВМ 10
Четвертое поколение ЭВМ 14
Заключение 19
Список литературы 20

Прикрепленные файлы: 1 файл

Vertechev3303_s_ispravlenijami.docx

— 52.68 Кб (Скачать документ)

Первой такой серией, с которой принято вести отсчет третьего поколения, является широко известная серия моделей IBM Series/360 (или кратко IBM/360), серийный выпуск которой был начат в США в 1964 г; а уже к 1970 г. серия включала 11 моделей. Данная серия оказала большое влияние на дальнейшее развитие ЭВМ общего назначения во всех странах в качестве эталона и стандарта для многих проектных решений в области вычислительной техники. Среди других ЭВМ третьего поколения можно отметить такие модели как PDP-8, PDP-11, B3500 и целый ряд других. В СССР и других странах СЭВ с 1972 г. было начато производство Единой серии ЭВМ (ЕС ЭВМ), копирующей (насколько это было технологически возможно) серию IBM/360. Наряду с серией ЕС ЭВМ в странах СЭВ и СССР с 1970 г. было начато производство серии малых ЭВМ (СМ ЭВМ), совместимой с известной PDP-серией.

Если модели серии IBM/360 не полностью использовали ИС-технологию (применялись и методы минитюаризации дискретных транзисторных элементов), то новая серия IBM/370 была реализована уже по 100%-й ИС-технологии, сохраняла преемственность с 360-й серией, но ее модели имели значительно более лучшие технические характеристики, более развитую систему команд и ряд важных архитектурных новшеств.

Значительно более мощным становится программное обеспечение, обеспечивающее функционирование ЭВМ в различных режимах эксплуатации. Появляются развитые cистемы управления базами данных (СУБД), системы автоматизирования проектных работ (САПР) различного назначения, совершенствуются АСУ, АСУТП и др. Большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения. По-прежнему появляются новые и развиваются существующие языки и системы программирования, количество которых достигает уже порядка 3000. Наиболее широкое применение ЭВМ третьего поколения нашли в качестве технической основы создания больших и сверхбольших информационных систем. Важную роль в решении данной проблемы сыграло создание программного обеспечения (СУБД), обеспечивающего создание и ведение баз и банков данных различного назначения. Разнообразие вычислительных и программных средств, а также периферийного оборудования поставило на повестку дня вопросы эффективного выбора комплексов программно-вычислительных средств для тех или иных приложений.

О развитии ВТ третьего поколения в СССР следует сказать особо. Для выработки единой технической политики в области вычислительной техники в 1969 г. по инициативе Союза была создана Межправительственная комиссия с Координационным центром, а затем и Советом главных конструкторов. Было принято решение о создании аналога серии IBM/360 в качестве основы вычислительной техники стран СЭВ (Совет Экономической Взаимопомощи). Для этого были сконцентрированы усилия больших научно-исследовательских и проектно-конструкторских коллективов, привлечено более 20 тыс. ученых и высококвалифицированных специалистов, создан крупный научно-исследовательский центр вычислительной техники (НИЦЭВТ), что позволило в начале 70-х годов наладить серийное производство первых моделей ЕС ЭВМ. Сразу же следует отметить, что модели ЕС ЭВМ (особенно первые) являлись далеко не лучшими копиями соответствующих оригиналов серии IBM/360.

Конец 60-х годов в СССР характеризуется большим разнообразием несовместимых средств вычислительной техники, серьезно уступающим по основным показателям лучшим зарубежным моделям, что потребовало выработки более разумной технической политики в данном стратегически важном вопросе. Принимая во внимание весьма серьезное отставание в этом вопросе от развитых в компьютерном отношении стран (и в первую очередь, от извечного конкурента - США) и было принято вышеуказанное решение, выглядевшее весьма заманчиво - использовать отработанную и апробированную в течение 5 лет и уже хорошо зарекомендовавшую себя IBM-серию с целью быстрого и дешевого внедрения ее в народное хозяйство, открывая широкий доступ к весьма богатому программному обеспечению, созданному к тому времени за рубежом. Но все это являлось лишь тактическим выигрышем, стратегии же развития отечественной вычислительной техники был нанесен мощный нокаутирующий удар.

Четвертое поколение ЭВМ

Конструктивно-технологической основой вычислительной техники четвертого поколения становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы, созданные в 70-80-х годах. С помощью БИС на одном кристалле можно создать устройства, содержащие тысячи и десятки тысяч транзисторов. Компактность узлов при использовании БИС позволяет строить ЭВМ с большим числом вычислительных устройств - процессоров (так называемые многопроцессорные вычислительные системы). При этом, БИС - технология частично использовалась уже и в проектах предыдущего поколения (IBM/360, ЕС ЭВМ ряд-2 и др.).

Наиболее важный в концептуальном плане критерий, по которому ЭВМ четвертого поколения можно отделить от ЭВМ третьего поколения, состоит в том, что первые проектировались уже в расчете на эффективное использование современных языков программирования и упрощения процесса программирования для проблемного программиста. В аппаратном отношении для них характерно широкое использование ИС- технологии и быстродействующих запоминающих устройств. Наиболее известной серией ЭВМ четвертого поколения можно считать IBM/370, которая в отличие от не менее известной серии IBM/360 третьего поколения, располагает более развитой системой команд и более широким использованием микропрограммирования. В старших моделях 370-й серии был реализован аппарат виртуальной памяти, позволяющий создавать для пользователя видимость неограниченных ресурсов оперативной памяти.

Парк всех машин четвертого поколения можно условно разделить на пять основных классов:

  • микро-ЭВМ,
  • персональные компьютеры (ПК),
  • мини-ЭВМ,
  • специальные ЭВМ,
  • ЭВМ общего назначения,
  • супер-ЭВМ.

В отличие от вычислительной техники первых трех поколений ЭВМ четвертого поколения правильнее было бы характеризовать тремя основными показателями:

  • элементной базой (СБИС),
  • персональным характером использования (ПК),
  • нетрадиционной архитектурой (супер-ЭВМ).

Элементная база на основе СБИС позволила достичь больших успехов в деле миниатюризации, повышения надежности и производительности, позволив создавать микро- и мини-ЭВМ, превосходящие по возможностям средние и большие ЭВМ предыдущего поколения при значительно меньшей стоимости. Существенные изменения претерпела и архитектура вычислительной техники, рост сложности которой удалось добиться также благодаря элементной базе. Технология производства процессоров на базе БИС и СБИС позволила избавиться от контроля производства средств ВТ со стороны государства и крупных фирм-разработчиков, дав возможность любому, обладающему определенными знаниями и навыками, человеку довольно легко создавать в домашних условиях, что существенно приблизило ее к массовому пользователю и ускорило темпы компьютерной революции и массовой информатизации общества.

Феномен персонального компьютера (ПК) восходит к созданию в 1965 г. первой мини-ЭВМ PDP-8, которая появилась в результате универсализации специализированного микропроцессора для управления ядерным реактором. Машина быстро завоевала популярность и стала первым массовым компьютером этого класса; в начале 70-х годов число машин превысило 100 тыс. шт. Дальнейшим важным шагом был переход от мини- к микро- ЭВМ; этот новый структурный уровень вычислительной техники начал формироваться на рубеже 70-х годов, когда появление БИС дало возможность создать универсальный процессор на одном кристалле. Первый микропроцессор Intel-4004 был создан в 1971 г. и содержал 2250 элементов, а первый универсальный микропроцессор Intel-8080, явившийся стандартом микрокомпьютерной технологии и созданный в 1974 г., содержал уже 4500 элементов и послужил основой для создания первых ПК. В 1979 г. выпускается один из самых мощных и универсальных 16-битный микропроцессор Motorolla-68000 c 70.000 элементами, а в 1981 г. - первый 32-битный микропроцессор Hewlett Packard с 450 тыс. элементами. Выпускались и другие микропроцессоры, но отмеченные были лидерами своего времени; на сегодня ВТ располагает большим набором превосходных универсальных микропроцессоров.

Первым ПК можно считать Altair-8800, созданный на базе микропроцессора Intel-8080 в 1974 г. Э. Робертсом. Компьютер рассылался по почте, стоил всего 397 $ и имел возможности для расширения периферийными устройствами. Для Altair-8800 П. Аллен и У. Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии они основали теперь знаменитую компанию MicroSoft Inc). Доработка ПК цветным монитором привела к созданию конкурирующей модели ПК Z-2. Через год после появления первого Altair-8800 в производство ПК включилось более 20 различных компаний и фирм. Начала формироваться ПК-индустрия (собственно производство ПК, их сбыт, периодические и непериодические издания, выставки, конференции и т.д.). А уже в 1977 г. были запущены в серийное производство три модели ПК Apple-2 (фирма Apple Computers), TRS-80 (фирма Tandy Radio Shark) и PET (фирма Commodore), из которых в конкурентной борьбе сначала отстающая фирма Apple становится вскоре лидером производства ПК (ее модель Apple-2 имела огромный успех). К 1980 г. корпорация Apple выходит на Уолл-стрит с самым большим акционерным капиталом и годовым доходом в 117 млн. $. Такой успех позволил сформироваться мнению, что именно модель Apple-2 является первым ПК.

Но уже в 1981 г. фирма IBM, во избежание потери массового рынка, начинает выпуск своих ныне широко известных серий ПК IBM PC/XT/AT и PS/2,открывших новую эпоху персональной ВТ. Выход на арену ПК-индустрии гиганта IBM ставит производство ПК на промышленную основу, что позволяет решить целый ряд важных для пользователя вопросов (стандартизация, унификация, развитое программное обеспечение и др.), которым фирма уделяла большое внимание уже в рамках производства серий IBM/360 и IBM/370.

Супер-ЭВМ характеризуются как высокой производительностью ( 2х107 оп/с.), так и нетрадиционной архитектурой. Развитие супер-ЭВМ обусловлено необходимостью решения сложных задач, требующих большого времени и не поддающихся обработке вычислительными средствами других классов. К таким задачам относятся многие задачи математической физики, космологии и астрономии, моделирования сложных систем и др. Наряду с этим вполне естественным желанием является получить ЭВМ с максимальным быстродействием - именно ускорение счета лежало в основе создания вычислительной техники вообще.

Заключение

На начальном этапе появление ЕС ЭВМ привело к унификации компьютерных систем, позволило установить начальные стандарты программирования и организовывать широкомасштабные проекты, связанные с внедрением программ. До этого программы, как правило, эксплуатировались исключительно организацией-разработчиком, а внедрение было затруднительным из-за разнородности компьютерной техники по стране. Без подобного рода унификации постановка глобальных задач типа АСУ была бы просто невозможна.

В целом, внедрение ЕС ЭВМ позволило сократить отставание отечественной компьютерной отрасли от США по ряду позиций (проектирование архитектуры аппаратно-программных комплексов, разработка программного обеспечения, системотехника, применение ЭВМ для управления данными), а по отдельным направлениям даже выйти на лидирующие позиции (разработка матричных процессоров, разработка эффективных методов интеграции нескольких ОС на одной ЭВМ).

Ценой этого было повсеместное свёртывание собственных оригинальных разработок и попадание в зависимость от идей и концепций фирмы IBM.

В 1980-е годы повсеместное внедрение ЕС ЭВМ превратилось в серьёзный тормоз для развития отрасли. После дорогостоящих и заранее спланированных закупок руководители предприятий были вынуждены эксплуатировать морально устаревшие компьютерные системы. Параллельно развивались системы на малых машинах и на персональных компьютерах, которые становились всё более и более популярны. В то время мало кто имел взвешенную оценку достоинств и недостатков различных архитектур, и точки зрения, как правило, сводились к двум полярным мнениям: "персоналки - это несерьёзно, солидные задачи надо решать на солидных машинах" и "большие ЭВМ - это каменный век, мы сейчас быстренько всё перепишем на персональном компьютере". К сожалению, у части специалистов такая однобокость во взглядах не преодолена до сих пор.

На позднейшем этапе, в 1990-е годы, наступил переломный момент. Отечественная промышленность, вступившая в глубокий экономический и структурный кризис, не смогла создать ни аналогов, ни заменителей ЕС ЭВМ на новой элементной базе. В итоге произошёл полный переход на импортные компьютеры и окончательное свёртывание программы по разработке отечественных компьютеров, возникли проблемы переноса технологий на современные компьютеры, модернизации технологий, трудоустройства и переквалификации сотен тысяч специалистов.

 

 

 

Заключение

За достаточно короткий промежуток времени электронно-вычислительная техника сделала большой скачок вперед. Я уже не застал (равно как и все мое поколение) тех огромных компьютеров, которые занимали целые залы и аудитории, а иногда даже этажи. Те компьютеры работали медленно и создавались исключительно в научных целях. Они упрощали подсчеты человека и брали часть его функций (на момент появления первой ЭФМ лишь малую часть) на себя. Компьютеры изначально разрабатывались как помощники человека. Сегодня я могу с уверенностью переделать известную фразу "Собака - друг человека" в "Компьютер - друг человека". Если совсем недавно техника была подчиненным человека и выступала с позиции крестьянина рядом со своим помещиком, то теперь этот "крестьянин" стал выпрямляться и не далек тот день, когда "крепостное право" будет отменено. За те 50 лет, которые ЭВТ развивалась, компьютеры стали незаменимым подспорьем в жизни человека: ракеты запускаются в космос по показаниям компьютеров, погода на завтра определяется мощнейшим компьютером, скорость обработки данных которого запредельно высока даже для понимания продвинутого юзера, фабрики, заводы, даже больницы - везде важен процесс автоматизации. Сегодня многие операции проводятся специально созданными машинными роботами, которые появились на свет благодаря последним компьютерным разработкам. Да и невозможно человеку современному представить свою жизнь без ПК. Человечество не стоит на месте, и прогресс неумолимо бежит вперед. За последние сто лет мы так далеко ушли вперед, что тяжело даже осознать, что на это потребовалось всего лишь 100 лет.

 

Список литературы

  1. Атоматные сети и компьютеры: история развития и современное состояние; Торгашев В.А.; Журнал «Информационно-измерительные и управляющие системы», №5, 2012; Изд. «Радиотехника»; ISSN: 2070-0814
  2. История ЭВМ в вычислительном центре сибирского отделения АН СССР. 2. Научно-технические проекты и разработки; Метляев Ю.В.; Журнал «Проблемы информатики»; Изд. «Институт вычислительной математики и математической геофизики Сибирского отделения РАН (Новосибирск)»;  ISSN: 2073-0667
  3. Назад в будущее, вперёд в прошлое; Зверев Сергей; Журнал «Компоненты и технологии», №31, 2003; Изд. «Файнстрит»; ISSN: 2079-6811
  4. Экономические аспекты информационных революций; Демидова Е.А., Кошелев С.С.; Журнал «Научно-технический вестник информационных технологий, механики и оптики», №41, 2007; Изд. «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»; ISSN: 2226-1494
  5. Как создавалась первая цифровая последовательная ЭВМ в СССР – машина гифти; Эйнгорин М.Я.; Изд. «Издательство Нижегородского госуниверситета», 2007, ISBN: 978-5-91326-015-4
  6. Беседы о поколениях ЭВМ; Бусленко В.Н., Бусленко Н.П.; Изд. «Эврика», 1977
  7. Нам рано жить воспоминаниями; Кузнецов А.В.; Журнал «Автоматика, связь, информатика», №7, 2011; Изд. «Российские железные дороги»; ISSN: 0005-2329
  8. Состояние и перспективы развития информатики; Юсупов Р.М.; Журнал «Труды СПИИРАН», №5, 2007; Изд. «Санкт-Петербургский институт информатики и автоматизации РАН» ISSN: 2078-9181
  9. Обратные задачи естествознания и компьютерное моделирование; Кабанихин С.И.; Журнал «наука из первых рук», №1, 2013; Изд. «ООО «Инфолио»» ISSN: 1810-3960
  10. Наукометрический анализ журнала «Nature» за 1869-1996 гг.; Архипов Д.Б.; 1997

Информация о работе Особенности строения первых ЭВМ