Основные типы и характеристики микропроцессоров

Автор работы: Пользователь скрыл имя, 08 Апреля 2013 в 18:38, курсовая работа

Краткое описание

Данная работа посвящена изучению микропроцессоров, а именно:
1 История развития первых микропроцессоров;
2 Области их применения;
3 Классификация;
4 Структура микропроцессора;
5 Основные характеристики;
6 Архитектура МП.

Содержание

Введение .…………………………………………………………………..…2
История развития первых микропроцессоров …………………………4
Области применения микропроцессорных вычислительных систем…10
Классификация……………………………………………………………14
Структура микропроцессора……………………………………………22
Физическая структура …………………………………………22
Логическая структура………………………………………….27
Характеристики микропроцессоров…………………………………….31
Архитектура . …....…………………………………………….…………34
Функции типового микропроцессора…………………………34
Устройство управления.… ……………………………………35
Система команд……………………………….………………..37
Режимы адресации………………………………………………40
Типы архитектур……………………………………………….41
Организация прерываний ………………………………………43
Заключение …………………………………………………………………46
Список литературы ...………… ……………………………………………47

Прикрепленные файлы: 1 файл

микропроц.doc

— 424.00 Кб (Скачать документ)
  • встроенные системы контроля и управления;
  • локальные системы накопления и обработки информации;
  • распределенные системы управления сложными объектами;
  • распределенные высокопроизводительные системы параллельных вычислений.
    1. Встроенные системы контроля и управления

Встраивание, то есть постановка микропроцессора  в любую, даже простейшую схему (пульт) управления, принципиально изменяет качество функционирования отдельных  инструментов, приборов, разнообразных устройств, отдельных агрегатов технологической линии и так далее. Встраивание микропроцессора позволяет оптимизировать режимы работы управляемых объектов или процессов и за счет этого получать и прямой и косвенный технико-экономический эффект. Прямой технико-экономический эффект выражается в экономии потребляемой энергии, повышении срока службы и снижении расхода сверл, фрез, нагревательных элементов и т.д. Косвенный технико-экономический эффект связан со снижением требований к обслуживающему персоналу и повышением производительности. Практически во всех случаях встраивания микропроцессора только экономия электроэнергии обеспечивает окупаемость микропроцессорного управления за 1-1,5 года.

Управление оборудованием на основе встроенных систем контроля и управления создает реальные предпосылки осуществления полностью автоматизированных производств. Встраивание микропроцессора повышает качество работы и производительность оборудования, существенно снижает требования к персоналу, работающему на оборудовании. Цифровое управление отдельными единицами оборудования позволяет легко собирать информацию (или вызвать его) с нижних контуров на верхние уровни иерархической системы управления.

Управляющие встроенные микропроцессоры  предназначены для решения локальных задач управления объектами и могут выполнять функции контроллеров устройств, подключаемых к ЭВМ, более высоких контуров управления или быть центром управляющих систем нижних контуров управления.

Микропроцессоры, встраиваемые в оборудование, в большинстве случаев не комплектуются внешними устройствами и содержат только упрощенный специализированный пульт управления и ПЗУ управляющих программ. Лишь для некоторых применений, требующих частой замены управляющих программ, необходим загрузчик, выполненный на основе простейших технических средств.

    1. Локальные системы накопления и обработки информации.

Локальные системы, то есть расположенные  на рабочем месте, микропроцессорные  системы накопления и обработки  информации технически просто и экономически доступно осуществляют информационное обеспечение специалистов и руководителей, инженеров и врачей. Объединение локальных систем между собой в сеть и дистанционное подключение этой сети к большой ЭВМ с громадным информационным архивом позволяют создать завершенную автоматизированную систему информационного обеспечения.

Внешние устройства локальных вычислительных систем могут встраиваться в корпус микро-ЭВМ. Их комплект содержит устройства, минимально необходимые для вычислительных работ и обработки данных: цифровую, алфавитно-цифровую и функциональную клавиатуру; алфавитно-цифровой индикатор; печатающее устройство; внешние запоминающие устройства.

В комплект более сложных микро-ЭВМ, ориентированных на решение инженерных и научных задач, могут входить разнообразные внешние устройства, например устройства ввода-вывода и печати, визуального отображения, внешней памяти, комплексирования, пульты операторов общего назначения и так далее.

    1. Распределенные системы управления сложными объектами.

Альтернативой распространенным системам с центральным процессором становятся распределенные микропроцессорные управляющие системы. В этом случае микропроцессоры и связанные с ними схемы обработки данных физически располагаются вблизи мест возникновения информации, что позволяет вести обработку информации в месте ее возникновения, например, вблизи двигателя, рулей управления, тормозной системы и так далее. Связь таких локальных систем обработки с центральной системой обработки и накопления данных и создает пространственно-распределенную систему управления.

В распределенных системах достигается  значительная экономия в количестве и распределении линий связи, повышается живучесть, существенно  развиваются возможности оптимизации  режимов управления и функционирования.

4. Распределенные высокопроизводительные системы параллельных вычислений

Микропроцессоры открыли новые  возможности решения сложных  вычислительных задач, алгоритмы вычисления которых допускают распараллеливание, т.е. одновременные (параллельные) вычисления на многих микропроцессорах.

Системы параллельных вычислений на основе десятков, сотен, тысяч одинаковых или специализированных на определенные задачи микропроцессоров при значительно  меньших затратах дают такую же производительность, как и вычислительные системы  на основе мощных процессоров конвейерного типа. Микропроцессоры в распределенной вычислительной системе могут быть одинаковыми и универсальными или специализированными на определенные функции. Создание микропроцессорных систем с большим количеством специализированных по функциональному назначению процессоров позволяет проектировать мощные вычислительные системы нового типа по сравнению с традиционными развитыми большими вычислительными машинами.

В данной главе были рассмотрены  области применения микропроцессорных вычислительных систем, и выделены четыре основных направления в их применении.

3 Классификация

 

Существуют следующие виды классификаций  МП:

1.  По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Процессоры даже самых простых  ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество  разветвленных связей. Изменять структуру  процессора необходимо так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную архитектуру, т. е. в них к единой внутренней информационной магистрали подключаются все основные функциональные блоки (арифметико-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и другие).

Для обоснования классификации  микропроцессоров по числу БИС надо распределить все аппаратные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний. Сложность интерфейсной части определяется разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов и др.). Интерфейс процессора содержит несколько десятков информационных шин данных (ШД), адресов (ША) и управления (ШУ).

Однокристальные микропроцессоры  получаются при реализации всех аппаратных средств процессора в виде одной  БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени  интеграции элементов в кристалле  и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса.

Для получения многокристального  микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

На рисунке 1,а показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного (ОП), БИС управляющего (УП) и БИС интерфейсного (ИП) процессоров.

 

Рисунок 1

 

Операционный процессор служит для обработки данных, управляющий процессор выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнения БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор позволяет подключить память и периферийные средства к микропроцессору; он, по существу, является сложным контроллером для устройств ввода/вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти.

Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора  автономно, и поэтому может быть обеспечен режим одновременной  работы всех БИС МП, то есть конвейерный  поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора.

Многокристальные секционные микропроцессоры  получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рисунок 1,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства «стыковки».

Для создания высокопроизводительных многоразрядных микропроцессоров требуется  столь много аппаратных средств, не реализуемых в доступных БИС, что может возникнуть необходимость  еще и в функциональном разбиении  структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП.

Таким образом, микропроцессорная  секция это БИС, предназначенная  для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность «наращивания»  разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при параллельном включении большего числа БИС.

Однокристальные и трехкристальные  БИС МП, как правило, изготовляют  на основе микроэлектронных технологий униполярных полупроводниковых  приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов.

Использование многокристальных микропроцессорных  высокоскоростных биполярных БИС, имеющих  функциональную законченность при  малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.

2. По назначению различают универсальные  и специализированные микропроцессоры.

Универсальные микропроцессоры могут  быть применены для решения широкого круга разнообразных задач. При  этом их эффективная производительность слабо зависит от проблемной специфики  решаемых задач. Специализация МП, то есть его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и так далее. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

Разработанные однокристальные конвольверы  используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные.

3. По виду обрабатываемых входных  сигналов различают цифровые  и аналоговые микропроцессоры.  Сами микропроцессоры цифровые  устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и так далее, заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной настройки цифровой части микропроцессора на различные алгоритмы обработки сигналов.

Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций.

Информация о работе Основные типы и характеристики микропроцессоров