Оперативная память

Автор работы: Пользователь скрыл имя, 24 Марта 2013 в 12:39, доклад

Краткое описание

Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память.
Оперативное запоминающее устройство является, пожалуй, одним из самых первых устройств вычислительной машины. Она присутствовала уже в первом поколении ЭВМ по архитектуре, созданных в сороковых — в начале пятидесятых годов двадцатого века. За эти пятьдесят лет сменилось не одно поколение элементной базы, на которых была построена память.

Прикрепленные файлы: 1 файл

Оперативная память.doc

— 217.00 Кб (Скачать документ)

С асинхронным интерфейсом процессор  должен ожидать, пока DRAM закончит выполнение своих внутренних операций, которые обычно занимают около 60 нс. С синхронным управлением DRAM происходит защелкивание информации от процессора под управлением системных часов. Триггеры запоминают адреса, сигналы управления и данных, что позволяет процессору выполнять другие задачи. После определенного количества циклов данные становятся доступны, и процессор может считывать их с выходных линий.

Другое преимущество синхронного  интерфейса заключается в том, что  системные часы задают только временные  границы, необходимые DRAM. Это исключает необходимость наличия множества стробирующих импульсов. В результате упрощается ввод, т. к. контрольные сигналы адреса данных могут быть сохранены без участия процессора и временных задержек. Подобные преимущества также реализованы и в операциях вывода.

Режим FPM динамической оперативной  памяти

Чтобы сократить время ожидания, стандартная память DRAM разбивается  на страницы. Обычно для доступа  к данным в памяти требуется выбрать  строку и столбец адреса, что занимает некоторое время. Разбиение на страницы обеспечивает более быстрый доступ ко всем данным в пределах данной строки памяти, то есть изменяет не номер строки, а номер столбца. Такой режим доступа к данным памяти называется (быстрым) постраничным режимом ( Fast Page Mode), а сама память – памятью Fast Page Mode. Другие вариации постраничного режима называются  Static Column или Nibble Mode.

Старничная организация памяти – простая схема повышения  эффективности памяти, в соответствии с которой память разбивается  на страницы длиной от 512 байт до нескольких килобайтов. Электронная схема пролистывания позволяет при обращении к ячейкам памяти в пределах страницы уменьшить количество состояний ожидания. Если нужная ячейка памяти находится вне текущей страницы, то добавляется одно или больше состояний ожидания, так как система выбирает новую страницу.

Чтобы увеличить скорость доступа  к памяти, были разработаны другие схемы доступа к динамической оперетивной памяти. Одним из наиболее существенных изменений было внедрение  пакетного (burst) режима доступа в процессоре 486 и более поздних.  Преимущества пакетного режима доступа проявляется в потому, что в большинстве случаев доступ к памяти является последовательным. После установки строки и столбца адреса в пакетном режиме можно обращаться к следующим трем смежным адресам без дополнительных состояний ожидания.

К первому поколению высокоскоростных DRAM главным образом относят EDO DRAM, SDRAM и RDRAM, а к следующему - ESDRAM, DDR SDRAM, Direct RDRAM, SLDRAM (ранее SynchLink DRAM) и т. д.

Рассмотрим некоторые  из этих  типов оперативной памяти.

EDO

Начиная с 1995 года, в компьютерах  на основе Pentium используется новый тип оперативной памяти – EDO ( Extended Data Out). Это усовершенствованный тип памяти FPM; его иногда называют Hyper Page Mode. Память типа EDO была разработана и запатентована фирмой  Micron Tehnology. Память EDO собирается из специально изготовленных микросхем, которые учитывают перекрытие синхронизации между очередными операциями доступа.  Как следует из названия – Etended Data Out, драйвера вывода данных на микросхеме, в отличии от FPM, не включаются, когда контроллер памяти удаляет столбец адреса в начале следующего цикла. Это позволяет совместить (по времени) следующий цикл с предыдущим, экономя примерно 10 нс в каждом цикле.

Таким образом, контроллер памяти EDO может начать выполнение новой команды выборки столбца адреса, а данные будут считываться по текущему адресу. Это почти идентично использованию различных банков для чередования памяти, но в отличии от чередования, не нужно одновременно устанавливать два идентичных банка памяти в системе.

SDRAM

SDRAM ( Synchronous DRAM ) – это тип динамической оперативной памяти DRAM , работа которой синхронизируется с шиной памяти. SDRAM передает информацию в высокоскоростных пакетах, Использующих высокоскоростной синхронизированный интерфейс. SDRAM позволяет избежать использования большинства циклов ожидания, необходимых при работе асинхронной DRAM, поскольку сигналы, по которым работает память такого типа, синхронизированны с тактовым генератором системной платы.

SDRAM способна работать на частоте,  превышающей частоту работы EDO DRAM. В первой половине 1997 г. SDRAM занимала  примерно 25% всего рынка DRAM. Как  и предполагалось, к 1998 г. она  стала наиболее популярной из  существующих высокоскоростных  технологий и занимала более 50% рынка памяти. Первоначально SDRAM работала на частоте от 66 до 100 МГц. Сейчас существует память, работающая на частотах от 125 до 143 МГц и даже выше. Ниже приведен рисунок модуля SDRAM.

 

Модуль SDRAM на 256Мбайт

 

Следующим преимуществом SDRAM перед EDO заключается в том, что EDO не работает на частотах свыше 66 МГц, а SDRAM доступна частота шины памяти до 100 МГц.

 

Стандартный модуль памяти SDRAM PC100

 

Выпустив чипсет 440BX с официальной  поддержкой тактовой частоты системной шины до 100 МГц, Intel сделала оговорку, что модули памяти SDRAM неустойчиво работают на такой скорости. После заявления Intel представила новую спецификацию, описывающую все тонкости, - SDRAM PC100.

Спецификация PC100. Ключевые моменты

  • Определение минимальной и максимальной длины пути для каждого сигнала в модуле.
  • Определение ширины дорожек и расстояния между ними.
  • 6-слойные платы с отдельными сплошными слоями масса и питание.
  • Детальная спецификация расстояний между слоями.
  • Строгое определение длины тактового импульса, его маршрутизации, момента начала и окончания.
  • Подавляющие резисторы в цепях передачи данных.
  • Детальная спецификация компонента SDRAM. Модули должны содержать чипы памяти SDRAM, совместимые с Intel SDRAM Component SPEC (version 1.5).

Данной спецификации отвечают только 8-нс чипы, а 10-нс чипы, по мнению Intel, неспособны устойчиво работать на частоте 100 МГц.

  • Детальная спецификация программирования EEPROM. Модуль должен включать интерфейс SPD, совместимый с Intel SPD Component SPEC (version 1.2).
  • Особые требования к маркировке.
  • Подавление электромагнитной интерференции.
  • Местами позолоченные печатные платы.

Введение стандарта PC100 в некоторой  степени можно считать рекламной  уловкой, но все известные производители  памяти и системных плат поддержали эту спецификацию, а с появлением следующего поколения памяти переходят на его производство.

Спецификация PC100 является очень критичной, одно описание с  дополнениями занимает больше 70 страниц.

Для комфортной работы с  приложениями, требующими высокого быстродействия, разработано следующее поколение синхронной динамической памяти - SDRAM PC133. В продаже можно найти модули, поддерживающие эту спецификацию, причем цена на них превышает цены соответствующих моделей PC100 на 10-30%. Насколько это оправдано, судить довольно сложно. Продвижением данного стандарта на рынок занимается уже не Intel, а их главный конкурент на рынке процессоров AMD. Intel же решила поддерживать память от Rambus, мотивируя это тем, что она лучше сочетается с шиной AGP 4x.

133-МГц чипы направлены на  использование с новым семейством  микропроцессоров, работающих на  частоте системной шины 133 МГц,  и полностью совместимы со  всеми PC100-продуктами. Такими производителями,  как VIA Technologies, Inc., Acer Laboratories Inc. (ALi), OPTi Inc., Silicon Integrated Systems (SiS) и Standard Microsystems Corporation (SMC), разработаны чипсеты, поддерживающие спецификацию PC133.

Недавно появилась еще одна интересная технология - Virtual Channel Memory. VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, совместима с существующими SDRAM, что позволяет делать апгрейд системы без значительных затрат и модификаций. Это решение также нашло поддержку у некоторых производителей чипсетов.

Enhanced SDRAM (ESDRAM)

Для преодоления некоторых проблем  с задержкой сигнала, присущих стандартным DRAM-модулям, производители решили встроить небольшое количество SRAM в чип, т. е. создать на чипе кэш. Одним из таких решений, заслуживающих внимания, является ESDRAM от Ramtron International Corporation.

ESDRAM - это по существу SDRAM плюс  немного SRAM. При малой задержке  и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кэш-памяти, DRAM-кэш предназначен для хранения наиболее часто используемых данных. Следовательно, уменьшается время доступа к данным медленной DRAM.

DDR SDRAM (SDRAM II)

DDR SDRAM (Double Date Rate SDRAM) является синхронной памятью, реализующей удвоенную скорость передачи данных по сравнению с обычной SDRAM.

DDR SDRAM не имеет полной совместимости  с SDRAM, хотя использует метод  управления, как у SDRAM, и стандартный  168-контактный разъем DIMM. DDR SDRAM достигает удвоенной пропускной способности за счет работы на обеих границах тактового сигнала (на подъеме и спаде), а SDRAM работает только на одной.

SLDRAM

Стандарт SLDRAM является открытым, т. е. не требует дополнительной платы  за лицензию, дающую право на производство чипов, что позволяет снизить их стоимость. Подобно предыдущей технологии, SLDRAM использует обе границы тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface. Эта память стремится работать на частоте 400 МГц.

У всех предыдущих DRAM были разделены линии адреса, данных и  управления, которые накладывают  ограничения на скорость работы устройств. Для преодоления этого ограничения  в некоторых технологических  решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии SLDRAM и DRDRAM. Они получили наибольшую популярность и заслуживают внимания.

 

 

RDRAM (Rambus DRAM)

RDRAM представляет спецификацию, созданную  Rambus, Inc. Частота работы памяти равна 400 МГц, но за счет использования обеих границ сигнала достигается частота, эквивалентная 800 МГц. Спецификация Rambus сейчас наиболее интересна и перспективна.

Direct Rambus DRAM - это высокоскоростная  динамическая память с произвольным  доступом, разработанная Rambus, Inc. Она обеспечивает высокую пропускную способность по сравнению с большинством других DRAM. Direct Rambus DRAMs представляет интегрированную на системном уровне технологию.

Технология Direct Rambus представляет собой  третий этап развития памяти RDRAM. Впервые память RDRAM появилась в 1995 г., работала на частоте 150 МГц и обеспечивала пропускную способность 600 Мбайт/с. Она использовалась в станциях SGI Indigo2 IMPACTtm, в приставках Nintendo64, а также в качестве видеопамяти. Следующее поколение RDRAM появилось в 1997 г. под названием Concurrent RDRAM. Новые модули были полностью совместимы с первыми. Но за год до этого события в жизни компании произошло не менее значимое событие. В декабре 1996 г. Rambus, Inc. и Intel Corporation объявили о совместном развитии памяти RDRAM и продвижении ее на рынок персональных компьютеров.

 Сейчас стали появляться  новые типы RAM микросхем и модулей.  Встречаются такие понятия, как  FPM RAM, EDO RAM, DRAM, VRAM, WRAM, SGRAM, MDRAM, SDRAM, SDRAM II (DDR SDRAM), ESDRAM, SLDRAM, RDRAM, Concurrent RDRAM, Direct Rambus. Большинство из этих технологий используются лишь на графических платах, и в производстве системной памяти компьютера используются лишь некоторые из них.

Память типа SRAM

Существует тип памяти, совершенно отличный от других, - статическая оперативная память (Static RAM – SRAM). Она названа так потому, что, в отличии от динамической оперативной памяти , для сохранения ее содержимого не требуется переодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из 6 транзисторов. Использование транзисторов без каких либо конденсаторов означает, что нет необходимости в регенерации. Пока подается питание, SRAM будет помнить то, что сохранено.

Микросхемы SRAM не используются для всей системной памяти потому, что по сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высокая. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластиризованное их размещение не только увеличивает габариты SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности РС. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта память используется процессором при чтении и записи. Во время операции чтения данные в высокоскоростную кэш-память предварительно записываются из оперативний памяти с низким быстродействием, то есть из DRAM. Поэтому именно кэш-память позволяет сократить количество “простоев” и увеличить быстродействие компьютера в целом.

Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом  успеха. Коэффициент совпадения равен  отношению количества удачных обращений  в кэш к общему количеству обращений. Попадание – это событие состоящее  в том, что необходимые процессору данные предварительно считываются в кэш из оперативной памяти;  иначе говоря, в случае попадания процессор может считывать данные из кэш-памяти. Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу. В таком случае необходимые данные не были предваритель считаны в кэш-память, поэтому процессор должен отыскать их в более медленной оперативной памяти, а не в быстродействующем кэше.

Информация о работе Оперативная память