Автор работы: Пользователь скрыл имя, 26 Апреля 2013 в 21:45, курсовая работа
Моделирование - это исследование какого-либо объекта или системы объектов путем построения и изучения их моделей. А также – это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.
Модель является средством для изучения сложных систем.
1. Теоретическая часть.................................................................................3-10
1.1. Понятие моделирования..................................................................3-4
1.2. Элементы теории массового обслуживания..................................4-7
1.3. Имитационное моделирование систем массового обслуживания......................................................................................7-10
2. Постановка задачи.......................................................................................11
3. Имитационная модель...........................................................................12-14
4. Реализация имитационной модели (среда Borland Delphi)................15-20
4.1 Описание переменных.....................................................................15
4.2 Листинг программы.....................................................................16-20
5. Краткое руководство пользователя......................................................21-23
6. Список использованной литературы.........................................................24
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образца
Уфимский государственный авиац
Кафедра автоматизированных систем управления
Моделирование работы автозаправочной станции (случай 2)
Пояснительная
записка к курсовой работе по дисциплине
«Имитационное моделирование
Группа ПИЭ-414
Выполнила ____________ ___________ ____________
Принял ____________ ___________ Алыпов Ю.Е.
(подпись) (дата) (И.О.Фамилия)
Уфа-2008
Содержание
4.1 Описание переменных....................
4.2 Листинг
программы.....................
1.1. Понятие моделирования
Модель – это любой образ, аналог, мысленный или установленный, изображение, описание, схема, чертеж, и т.п. какого-либо объекта, процесса или явления, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.
Моделирование - это исследование какого-либо объекта или системы объектов путем построения и изучения их моделей. А также – это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.
Модель является средством для изучения сложных систем.
В общем случае сложная система представляется как многоуровневая конструкция из взаимодействующих элементов, объединяемых в подсистемы различных уровней. К сложным системам, в т.ч., относятся информационные системы. Проектирование таких сложных систем осуществляется в два этапа.
1). Внешнее проектирование.
На этом этапе проводят выбор структуры системы, основных ее элементов, организации взаимодействия между элементами, учет воздействия внешней среды, оценка показателей эффективности системы.
2). Внутреннее проектирование – проектирование отдельных элементов системы.
Типичным методом исследования сложных систем на первом этапе является моделирование их на ЭВМ.
В результате моделирования получаются зависимости, характеризующие влияние структуры и параметров системы на ее эффективность, надежность и другие свойства. Эти зависимости используются для получения оптимальной структуры и параметров системы.
Модель, сформулированная на языке математики с использованием математических методов называется математической моделью.
Имитационное моделирование – воспроизведение на компьютере (имитация) процесса функционирования исследуемой системы. Для него не требуется приведение математической модели к виду, разрешимому относительно искомых величин.
Для имитационного моделирования характерно воспроизведение явлений, описываемых математической моделью, с сохранением их логической структуры, последовательности чередования во времени. Для оценки искомых величин может быть использована любая подходящая информация, циркулирующая в модели, если только она доступна для регистрации и последующей обработке.
Искомые величины при
исследовании процессов методом
имитационного моделирования
1.2. Элементы теории массового обслуживания
За последние десятилетия в самых разных областях народного хозяйства возникла необходимость решения вероятностных задач, связанных с работой систем массового обслуживания (СМО). Примерами таких систем служат телефонные станции, ремонтные мастерские, торговые предприятия, билетные кассы и т.д. Работа любой системы массового обслуживания состоит в обслуживании поступающего в нее потока требований (вызовы абонентов, приход покупателей в магазин, требования на выполнение работы в мастерской и т. д.).
Математическая дисциплина, изучающая модели реальных систем массового обслуживания, получила название теории массового обслуживания.
Задача теории массового обслуживания - установить зависимость результирующих показателей работы СМО (вероятности того, что требование будет обслужено; математического ожидания числа обслуженных требований и т. д.) от входных показателей (количество приборов в системе, параметров входящего потока требований и т. д.). Установить такие зависимости в формульном виде можно только для простых систем массового обслуживания.
Изучение же реальных систем проводится путем имитации, или моделирования их работы на ЭВМ с привлечением метода статистических испытаний.
Система массового обслуживания считается заданной, если определены:
1) входящий поток требований,
или, иначе говоря, закон распределения,
характеризующий моменты
Первопричину требований называют источником. В дальнейшем условимся считать, что источник располагает неограниченным числом требований и что требования однородны, т. е. различаются только моментами появления в системе;
2) система обслуживания состоит из накопителя и узла обслуживания. Последний представляет собой одно или несколько обслуживающих устройств, которые в дальнейшем будем называть приборами. Каждое требование должно поступить на один из приборов, чтобы пройти обслуживание.
Может оказаться, что требованиям придется ожидать, пока приборы освободятся. В этом случае требования находятся в накопителе, образуя одну или несколько очередей. Положим, что переход требования из накопителя в узел обслуживания происходит мгновенно;
3) время обслуживания требования каждым прибором, которое является случайной величиной и характеризуется некоторым законом распределения;
4) дисциплина ожидания, т. е. совокупность правил, регламентирующих количество требований, находящихся в один и тот же момент времени в системе. Система, в которой поступившее требование получает отказ, когда все приборы заняты, называется системой без ожидания.
Если требование, заставшее все приборы занятыми, становится в очередь и ожидает до тех пор, пока освободиться один из приборов, то такая система называется чистой системой с ожиданием.
Система, в которой требование, заставшее все приборы занятыми, становится в очередь только в том случае, когда число требований, находящихся в системе, не превышает определенного уровня (в противном случае происходит потеря требования), называется смешанной системой обслуживания;
5) дисциплина обслуживания, т. е. совокупность правил, в соответствии с которыми требование выбирается из очереди для обслуживания. Наиболее часто на практике используются следующие правила:
- заявки принимаются
к обслуживанию в порядке
- заявки принимаются к обслуживанию по минимальному времени
получения отказа;
- заявки принимаются
к обслуживанию в случайном
порядке в соответствии с
6) дисциплина очереди, т.е. совокупность правил, в соответствии с которыми требование отдает предпочтение той или иной очереди (если их несколько) и располагается в выбранной очереди. Например, поступившее требование может занять место в самой короткой очереди; в этой очереди оно может расположиться последним (такая очередь называется упорядоченной), а может пойти на обслуживание вне очереди. Возможны и другие варианты.
Введем также следующие характеристики потока событий:
1.3.Имитационное моделирование систем массового обслуживания
Сущность метода имитационного моделирования применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также моделировать процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализации случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состоянии процесса подвергается статистической обработке для оценки величин, являющихся показателями качества обслуживания.
При исследовании сложных систем методом
имитационного моделирования
В качестве математических схем, используемых для формализации действия этих факторов, используются случайные события, случайные величины и случайные процессы (функции). Формирование на ЭВМ реализаций случайных объектов любой природы сводится к выработке и преобразованию случайных чисел. Рассмотрим способ получения возможных значений случайных величин с заданным законом распределения. Для формирования возможных значений случайных величин с заданным законом распределения исходным материалом служат случайные величины, имеющие равномерное распределение в интервале (0, 1). Другими словами, возможные значения xi случайной величины ξ, имеющей равномерное распределение в интервале (0,1), могут быть преобразованы в возможные значения yi случайной величины η, закон распределения которой задан. Способ преобразования состоит в том, что из равномерно распределенной совокупности отбираются случайные числа, удовлетворяющие некоторому условию таким образом, чтобы отобранные числа подчинялись заданному закону распределения.
Предположим, что необходимо получить последовательность случайных чисел yi, имеющих функцию плотности fη(y). Если область определения функции fη(y) не ограничена с одной или обеих сторон, необходимо перейти к соответствующему усеченному распределению. Пусть область возможных значений для усеченного распределения равна (a, b).
От случайной величины η, соответствующей функции плотности
fη(y), перейдем к
Случайная величина ξ будет иметь область возможных значений (0,1) и функцию плотности fξ(z), задаваемую выражением
Пусть максимальное значение fξ(z) равно fm. Зададим равномерные распределения в интервалах (0, 1) случайных чисел x2i-1 и x2i. Процедура получения последовательности yi случайных чисел, имеющих функцию плотности fη(y), сводится к следующему:
1) из исходной совокупности выбираются пары случайных чисел
x2i-1, x2i;
2) для этих чисел
проверяется справедливость
3) если неравенство (3) выполнено, то очередное число yi определяется из соотношения
При моделировании процессов обслуж
Информация о работе Моделирование работы автозаправочной станции