Микроядерная архитектура операционной системы. Достоинства и недостатки

Автор работы: Пользователь скрыл имя, 21 Декабря 2012 в 06:56, контрольная работа

Краткое описание

Микроядерная архитектура является альтернативой классическому способу построения операционной системы. Под классической архитектурой в данном случае понимается рассмотренная выше структурная организация ОС, в соответствии с которой все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. При этом некоторые вспомогательные функции ОС оформляются в виде приложений и выполняются в пользовательском режиме наряду с обычными пользовательскими программами (становясь системными утилитами или обрабатывающими программами).

Прикрепленные файлы: 1 файл

Микроядерная архитектура ЭВМ.docx

— 197.09 Кб (Скачать документ)

 

 

 

 

 

 

ТЕМА: Микроядерная архитектура                       операционной   системы. Достоинства и недостатки.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Микроядерная архитектура является альтернативой классическому способу построения операционной системы. Под классической архитектурой в данном случае понимается рассмотренная выше структурная организация ОС, в соответствии с которой все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. При этом некоторые вспомогательные функции ОС оформляются в виде приложений и выполняются в пользовательском режиме наряду с обычными пользовательскими программами (становясь системными утилитами или обрабатывающими программами). Каждое приложение пользовательского режима работает в собственном адресном пространстве и защищено тем самым от какого-либо вмешательства других приложений. Код ядра, выполняемый в привилегированном режиме, имеет доступ к областям памяти всех приложений, но сам полностью от них защищен. Приложения обращаются к ядру с запросами на выполнение системных функций.

 

 Суть микроядерной архитектуры состоит в следующем. В привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром (рис. 3.10). Микроядро защищено от остальных частей ОС и приложений. В состав микроядра обычно входят машинно-зависимые модули, а также модули, выполняющие базовые (но не все!) функции ядра по управлению процессами, обработке прерываний, управлению виртуальной памятью, пересылке сообщений и управлению устройствами ввода-вывода, связанные с загрузкой или чтением регистров устройств. Набор функций микроядра обычно соответствует функциям слоя базовых механизмов обычного ядра. Такие функции операционной системы трудно, если не невозможно, выполнить в пространстве пользователя.

 

 

Рис. 3.10. Перенос основного  объема функций ядра в пользовательское пространство

Все остальные более высокоуровневые  функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Однозначного решения о том, какие из системных функций нужно  оставить в привилегированном режиме, а какие перенести в

пользовательский, не существует. В общем случае многие менеджеры  ресурсов, являющиеся неотъемлемыми  частями обычного ядра — файловая система, подсистемы управления виртуальной памятью и процессами, менеджер безопасности и т. п., — становятся «периферийными» модулями, работающими в пользовательском режиме.

 

Работающие в пользовательском режиме менеджеры ресурсов имеют  принципиальные отличия от традиционных утилит и обрабатывающих программ операционной системы, хотя при микроядерной архитектуре все эти программные компоненты также оформлены в виде приложений. Утилиты и обрабатывающие программы вызываются в основном пользователями. Ситуации, когда одному приложению требуется выполнение функции (процедуры) другого приложения, возникают крайне редко. Поэтому в операционных системах с классической архитектурой отсутствует механизм, с помощью которого одно приложение могло бы вызвать функции другого.

 Совсем другая ситуация  возникает, когда в форме приложения  оформляется часть операционной  системы. По определению, основным  назначением такого приложения  является обслуживание запросов  других приложений, например создание  процесса, выделение памяти, проверка  прав доступа к ресурсу и  т. д. Именно поэтому менеджеры  ресурсов, вынесенные в пользовательский  режим, называются серверами ОС, то есть модулями, основным назначением  которых является обслуживание  запросов локальных приложений  и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием является наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра.

 

 Схематично механизм  обращения к функциям ОС, оформленным  в виде серверов, выглядит следующим  образом (рис. 3.11). Клиент, которым  может быть либо прикладная  программа, либо другой компонент  ОС, запрашивает выполнение некоторой  функции у соответствующего сервера,  посылая ему сообщение. Непосредственная  передача сообщений между приложениями  невозможна, так как их адресные  пространства изолированы друг  от друга. Микроядро, выполняющееся  в привилегированном режиме, имеет  доступ к адресным пространствам  каждого из этих приложений  и поэтому может работать в  качестве посредника. Микроядро  сначала передает сообщение, содержащее  имя и параметры вызываемой  процедуры нужному серверу, затем  сервер выполняет запрошенную  операцию, после чего ядро возвращает  результаты клиенту с помощью  другого сообщения. Таким образом,  работа микроядерной операционной системы соответствует известной модели клиент-сервер, в которой роль транспортных средств выполняет микроядро.

 

 

рис. 3.11. Реализация системного вызова в микроядерной архитектуре

 

Преимущества  и недостатки микроядерной архитектуры

 

Операционные системы, основанные на концепции микроядра, в высокой  степени удовлетворяют большинству  требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, и это является основным недостатком микроядерной архитектуры.

 

 Высокая степень переносимости  обусловлена тем, что весь машинно-зависимый  код изолирован в микроядре,  поэтому для переноса системы  на новый процессор требуется  меньше изменений и все они  логически сгруппированы вместе.

 

 Расширяемость присуща  микроядерной ОС в очень высокой степени. В традиционных системах даже при наличии многослойной структуры нелегко удалить один слой и поменять его на другой по причине множественности и размытости интерфейсов между слоями. Добавление новых функций и изменение существующих требует хорошего знания операционной системы и больших затрат времени. В то же время ограниченный набор четко определенных интерфейсов микроядра открывает путь к упорядоченному росту и эволюции ОС. Добавление новой подсистемы требует разработки нового приложения, что никак не затрагивает целостность микроядра. Микроядерная структура позволяет не только добавлять, но и сокращать число компонентов операционной системы, что также бывает очень полезно. Например, не всем пользователям нужны средства безопасности или поддержки распределенных вычислений, а удаление их из традиционного ядра чаще всего невозможно. Обычно традиционные операционные системы позволяют динамически добавлять в ядро или удалять из ядра только драйверы внешних устройств — ввиду частых изменений в конфигурации подключенных к компьютеру внешних устройств подсистема ввода-вывода ядра допускает загрузку и выгрузку драйверов «на ходу», но для этого она разрабатывается особым образом (например, среда STREAMS в UNIX или менеджер ввода-вывода в Windows NT). При микроядерном подходе конфигурируемость ОС не вызывает никаких проблем и не требует особых мер — достаточно изменить файл с настройками начальной конфигурации системы или же остановить не нужные больше серверы в ходе работы обычными для остановки приложений средствами.

 

 Использование микроядерной модели повышает надежность ОС. Каждый сервер выполняется в виде отдельного процесса в своей собственной области памяти и таким образом защищен от других серверов операционной системы, что не наблюдается в традиционной ОС, где все модули ядра могут влиять друг на друга. И если отдельный сервер терпит крах, то он может быть перезапущен без останова или повреждения остальных серверов ОС. Более того, поскольку серверы выполняются в пользовательском режиме, они не имеют непосредственного доступа к аппаратуре и не могут модифицировать память, в которой хранится и работает микроядро. Другим потенциальным источником повышения надежности ОС является уменьшенный объем кода микроядра по сравнению с традиционным ядром — это снижает вероятность появления ошибок программирования.

Модель с микроядром хорошо подходит для поддержки распределенных вычислений, так как использует механизмы, аналогичные сетевым: взаимодействие клиентов и серверов путем обмена сообщениями. Серверы микроядерной ОС могут работать как на одном, так и на разных компьютерах. В этом случае при получении сообщения от приложения микроядро может обработать его самостоятельно и передать локальному серверу или же переслать по сети микроядру, работающему на другом компьютере.

 

                            

Переход к распределенной обработке требует минимальных изменений в работе операционной системы — просто локальный транспорт заменяется на сетевой. Производительность. При классической организации ОС (рис. 3.12, а) выполнение системного вызова сопровождается двумя переключениями режимов, а при микроядерной организации (рис. 3.12, 6) — четырьмя. Таким образом, операционная система на основе микроядра при прочих равных условиях всегда будет менее производительной, чем ОС с классическим ядром. Именно по этой причине микроядерный подход не получил такого широкого распространения, которое ему предрекали.

 

 

 

 

 

 

Рис. 3.12. Смена режимов  при выполнении системного вызова

 Серьезность этого  недостатка хорошо иллюстрирует  история развития Windows NT. В версиях 3.1 и 3.5 диспетчер окон, графическая библиотека и высокоуровневые драйверы графических устройств входили в состав сервера пользовательского режима, и вызов функций этих модулей осуществлялся в соответствии с микроядерной схемой. Однако очень скоро разработчики Windows NT поняли, что такой механизм обращений к часто используемым функциям графического интерфейса существенно замедляет работу приложений и делает данную операционную систему уязвимой в условиях острой конкуренции. В результате в версию Windows NT 4.0 были внесены существенные изменения — все перечисленные выше модули были перенесены в ядро, что отдалило эту ОС от идеальной микроядерной архитектуры, но зато резко повысило ее производительность.

 Этот пример иллюстрирует  главную проблему, с которой сталкиваются  разработчики операционной системы,  решившие применить микроядерный подход, — что включать в микроядро, а что выносить в пользовательское пространство. В идеальном случае микроядро может состоять только из средств передачи сообщений, средств взаимодействия с аппаратурой, в том числе средств доступа к механизмам привилегированной защиты. Однако многие разработчики не всегда жестко придерживаются принципа минимизации функций ядра, часто жертвуя этим ради повышения производительности. В результате реализации ОС образуют некоторый спектр, на одном краю которого находятся системы с минимально возможным микроядром, а на другом — системы, подобные Windows NT, в которых микроядро выполняет достаточно большой объем функций.

 

 

Выводы

Микроядерная архитектура является альтернативой классическому способу построения операционной системы, в соответствии с которым все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме.

 

В микроядерных ОС в привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Все остальные высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме.

 

Микроядерные ОС удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, что является основным недостатком микроядерной архитектуры.


Информация о работе Микроядерная архитектура операционной системы. Достоинства и недостатки