Математические основы информатики

Автор работы: Пользователь скрыл имя, 28 Октября 2014 в 15:02, реферат

Краткое описание

Совокупность приемов записи и наименования чисел называется системой счисления.
Числа записываются с помощью символов, и по количеству символов, используемых для записи числа, системы счисления подразделяются на позиционные и непозиционные. Если для записи числа используется бесконечное множество символов, то система счисления называется непозиционной.

Содержание

1. Системы счисления.
2. Системы кодирования информации.
2.1. Кодирование текстовой информации.
2.2. Кодирование графической информации.
2.3. Кодирование звуковой информации.
Список использованной литературы.

Прикрепленные файлы: 1 файл

Информатика.docx

— 26.20 Кб (Скачать документ)

АО «Медицинский университет Астана»

Кафедра информатики, математики с курсом биофизики

 

 

 

РЕФЕРАТ

Тема: Математические основы информатики

 

 

 

 

 

 

Выполнил: Каримов К.Т студент

факультета ОМ  135 группы.

Проверила: Каипова А.Ш.

 

 

 

 

 

 

Астана  2014

 

 

 

 

 

Содержание

 

1. Системы счисления.

 

2. Системы кодирования  информации.

2.1. Кодирование текстовой  информации.

2.2. Кодирование графической  информации.

2.3. Кодирование звуковой  информации.

 

Список использованной литературы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1. Системы счисления.

    

 

Совокупность приемов записи и наименования чисел называется системой счисления.

Числа записываются с помощью символов, и по количеству символов, используемых для записи числа, системы счисления подразделяются на позиционные и непозиционные. Если для записи числа используется бесконечное множество символов, то система счисления называется непозиционной. Примером непозиционной системы счисления может служить римская. Например, для записи числа один используется буква I, два и три выглядят как совокупности символов II, III, но для записи числа пять выбирается новый символ V, шесть — VI, десять — вводится символ X, сто — С, тысяча — Ми т.д. Бесконечный ряд чисел потребует бесконечного числа символов для записи чисел. Кроме того, такой способ записи чисел приводит к очень сложным правилам арифметики.

Позиционные системы счисления для записи чисел используют ограниченный набор символов, называемых цифрами, и величина числа зависит не только от набора цифр, но и от того, в какой последовательности записаны цифры, т.е. от позиции, занимаемой цифрой, например, 125 и 215. Количество цифр, используемых для записи числа, называется основанием системы счисления, в дальнейшем его обозначим q.

В повседневной жизни мы пользуемся десятичной позиционной системой счисления, q = 10, т.е. используется 10 цифр: 0 1 2 3 4 5 6 7 8 9.

Рассмотрим правила записи чисел в позиционной десятичной системе счисления. Числа от 0 до 9 записываются цифрами, для записи следующего числа цифры не существует, поэтому вместо 9 пишут 0, но левее нуля образуется еще один разряд, называемый старшим, где записывается (прибавляется) 1, в результате получается 10. Затем пойдут числа 11, 12, но на 19 опять младший разряд заполнится и мы его снова заменим на 0, а старший разряд увеличим на 1, получим 20. Далее по аналогии 30, 40 ... 90, 91, 92 ... до 99. Здесь заполненными оказываются два разряда сразу; чтобы получить следующее число, мы заменяем оба на 0, а в старшем разряде, теперь 
уже третьем, поставим 1 (т.е. получим число 100) и т.д. Очевидно, что, используя конечное число цифр, можно записать любое сколь угодно большое число. Заметим также, что производство арифметических действий в десятичной системе счисления весьма просто.

В информатике, вследствие применения электронных средств вычислительной техники, большое значение имеет двоичная система счисления, q = 2. На ранних этапах развития вычислительной техники арифметические операции с действительными числами производились в двоичной системе ввиду простоты их реализации в электронных схемах вычислительных машин. Например, таблица 
сложения и таблица умножения будут иметь по четыре правила:

0 + 0 = 0

0x0 = 0

0+1 = 1

0x1=0

1+0=1

1x0 = 0

1 + 1 = 10

1x1 = 1


А значит, для реализации поразрядной арифметики в компьютере потребуются вместо двух таблиц по сто правил в десятичной системе счисления две таблицы по четыре правила в двоичной. Соответственно на аппаратном уровне вместо двухсот электронных схем —восемь.

Но запись числа в двоичной системе счисления длиннее записи того же числа в десятичной системе счисления в log2 10 раз (примерно в 3,3 раза). Это громоздко и не удобно для использования, так как обычно человек может одновременно воспринять не более пяти-семи единиц информации, т.е. удобно будет пользоваться такими системами счисления, в которых наиболее часто используемые числа (от единиц до тысяч) записывались бы одной-четырьмя цифрами. 
Как это будет показано далее, перевод числа, записанного в двоичной системе счисления, в восьмеричную и шестнадцатеричную очень сильно упрощается по сравнению с переводом из десятичной в двоичную. Запись же чисел в них в три раза короче для восьмеричной и в четыре для шестнадцатеричной системы, чем в двоичной, но длины чисел в десятичной, восьмеричной и шестнадцатеричной системах счисления будут различаться ненамного. Поэтому, наряду с двоичной системой счисления, в информатике имеют хождение восьмеричная и шестнадцатеричная системы счисления.

Восьмеричная система счисления имеет восемь цифр: 0 12 3 4 5 6 7. Шестнадцатеричная — шестнадцать, причем первые 10 цифр совпадают по написанию с цифрами десятичной системы счисления, а для обозначения оставшихся шести цифр применяются большие латинские буквы, т.е. для шестнадцатеричной системы счисления получим набор цифр: 0123456789ABCDEF.

Если из контекста не ясно, к какой системе счисления относится запись, то основание системы записывается после числа в виде нижнего индекса.

 

Глава 2. Системы кодирования информации

Кодирование информации применяют для унификации формы представления данных, которые относятся к различным типам, в целях автоматизации работы с информацией. Кодирование – это выражение данных одного типа через данные другого типа. Например, естественные человеческие языки можно рассматривать как системы кодирования понятий для выражения мыслей посредством речи, к тому же и азбуки представляют собой системы кодирования компонентов языка с помощью графических символов. В вычислительной технике применяется двоичное кодирование. Основой этой системы кодирования является представление данных через последовательность двух знаков: 0 и 1. Данные знаки называются двоичными цифрами (binary digit), или сокращенно bit (бит). Одним битом могут быть закодированы два понятия: 0 или 1 (да или нет, истина или ложь и т. п.). Двумя битами возможно выразить четыре различных понятия, а тремя – закодировать восемь различных значений. Наименьшая единица кодирования информации в вычислительной технике после бита – байт. Его связь с битом отражает следующее отношение: 1 байт = 8 бит = 1 символ. Обычно одним байтом кодируется один символ текстовой информации. Исходя из этого, для текстовых документов размер в байтах соответствует лексическому объему в символах. Более крупной единицей кодирования информации служит килобайт, связанный с байтом следующим соотношением: 1 Кб = 1024 байт. Другими, более крупными, единицами кодирования информации являются символы, полученные с помощью добавления префиксов мега (Мб), гига (Гб), тера (Тб): 1 Мб = 1 048 580 байт; 1 Гб = 10 737 740 000 байт; 1 Тб = 1024 Гб. Для кодирования двоичным кодом целого числа следует взять целое число и делить его пополам до тех пор, пока частное не будет равно единице. Совокупность остатков от каждого деления, которая записывается справа налево вместе с последним частным, и будет являться двоичным аналогом десятичного числа. В процессе кодирования целых чисел от 0 до 255 достаточно использовать 8 разрядов двоичного кода (8 бит). Применение 16 бит позволяет закодировать целые числа от 0 до 65 535, а с помощью 24 бит – более 16,5 млн различных значений. Для того чтобы закодировать действительные числа, применяют 80-разрядное кодирование. В этом случае число предварительно преобразовывают в нормализованную форму, например: 2,1427926 = 0,21427926 101; 500 000 = 0,5 106. Первая часть закодированного числа носит название мантиссы, а вторая часть – характеристики. Основная часть из 80 бит отводится для хранения мантиссы, и некоторое фиксированное число разрядов отводится для хранения характеристики.

                

       2.1 Кодирование текстовой информации

Текстовую информацию кодируют двоичным кодом через обозначение каждого символа алфавита определенным целым числом. С помощью восьми двоичных разрядов возможно закодировать 256 различных символов. Данного количества символов достаточно для выражения всех символов английского и русского алфавитов. В первые годы развития компьютерной техники трудности кодирования текстовой информации были вызваны отсутствием необходимых стандартов кодирования. В настоящее время, напротив, существующие трудности связаны с множеством одновременно действующих и зачастую противоречивых стандартов. Для английского языка, который является неофициальным международным средством общения, эти трудности были решены. Институт стандартизации США выработал и ввел в обращениесистему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США). Для кодировки русского алфавита были разработаны несколько вариантов кодировок: 1) Windows-1251 – введена компанией Microsoft; с учетом широкого распространения операционных систем (ОС) и других программных продуктов этой компании в Российской Федерации она нашла широкое распространение; 2) КОИ-8 (Код Обмена Информацией, восьмизначный) – другая популярная кодировка российского алфавита, распространенная в компьютерных сетях на территории Российской Федерации и в российском секторе Интернет; 3) ISO (International Standard Organization – Международный институт стандартизации) – международный стандарт кодирования символов русского языка. На практике эта кодировка используется редко. Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации. Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов. Система 16-разрядного кодирования символов называется универсальной – UNICODE. Шестнадцать разрядов позволяет обеспечить уникальные коды для 65 536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков. Несмотря на простоту предложенного подхода, практический переход на данную систему кодировки очень долго не мог осуществиться из-за недостатков ресурсов средств вычислительной техники, так как в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое больше. В конце 1990-х гг. технические средства достигли необходимого уровня, начался постепенный перевод документов и программных средств на систему кодирования UNICODE. 
                      

                 2.2 Кодирование графической информации

Существует несколько способов кодирования графической информации. При рассмотрении черно-белого графического изображения с помощью увеличительного стекла заметно, что в его состав входит несколько мельчайших точек, образующих характерный узор (или растр). Линейные координаты и индивидуальные свойства каждой из точек изображения можно выразить с помощью целых чисел, поэтому способ растрового кодирования базируется на использовании двоичного кода представления графических данных. Общеизвестным стандартом считается приведение черно-белых иллюстраций в форме комбинации точек с 256 градациями серого цвета, т. е. для кодирования яркости любой точки необходимы 8-разрядные двоичные числа. В основу кодирования цветных графических изображений положен принцип разложения произвольного цвета на основные составляющие, в качестве которых применяются три основных цвета: красный (Red), зеленый (Green) и синий (Blue). На практике принимается, что любой цвет, который воспринимает человеческий глаз, можно получить с помощью механической комбинации этих трех цветов. Такая система кодирования называется RGB (по первым буквам основных цветов). При применении 24 двоичных разрядов для кодирования цветной графики такой режим носит название полноцветного (True Color). Каждый из основных цветов сопоставляется с цветом, дополняющим основной цвет до белого. Для любого из основных цветов дополнительным будет являться цвет, который образован суммой пары остальных основных цветов. Соответственно среди дополнительных цветов можно выделить голубой (Cyan), пурпурный (Magenta) и желтый (Yellow). Принцип разложения произвольного цвета на составляющие компоненты используется не только для основных цветов, но и для дополнительных, т. е. любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Этот метод кодирования цвета применяется в полиграфии, но там используется еще и четвертая краска – черная (Black), поэтому эта система кодирования обозначается четырьмя буквами – CMYK. Для представления цветной графики в этой системе применяется 32 двоичных разряда. Данный режим также носит название полноцветного. Приуменьшении количества двоичных разрядов, применяемых для кодирования цвета каждой точки, сокращается объем данных, но заметно уменьшается диапазон кодируемых цветов. Кодирование цветной графики 16-разрядными двоичными числами носит название режима High Color. При кодировании графической цветной информации с применением 8 бит данных можно передать только 256 оттенков. Данный метод кодирования цвета называется индексным.

 

 

                     2.3 Кодирование звуковой информации

В настоящий момент не существует единой стандартной системы кодирования звуковой информации, так как приемы и методы работы со звуковой информацией начали развиваться по сравнению с методами работы с другими видами информации самыми последними. Поэтому множество различных компаний, которые работают в области кодирования информации, создали свои собственные корпоративные стандарты для звуковой информации. Но среди этих корпоративных стандартов выделяются два основных направления. В основе метода FM (Frequency Modulation) положено утверждение о том, что теоретически любой сложный звук может быть представлен в виде разложения на последовательность простейших гармонических сигналов разных частот. Каждый из этих гармонических сигналов представляет собой правильную синусоиду и поэтому может быть описан числовыми параметрами или закодирован. Звуковые сигналы образуют непрерывный спектр, т. е. являются аналоговыми, поэтому их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняется с помощью специальных устройств – аналого-цифровых преобразователей (АЦП). Обратное преобразование, которое необходимо для воспроизведения звука, закодированного числовым кодом, производится с помощью цифроаналоговых преобразователей (ЦАП). Из-за таких преобразований звуковых сигналов возникают потери информации, которые связаны с методом кодирования, поэтому качество звукозаписи с помощью метода FM обычно получается недостаточно удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окраской, характерной для электронной музыки. При этом данный метод обеспечивает вполне компактный код, поэтому он широко использовался в те годы, когда ресурсы средств вычислительной техники были явно недостаточны. Основная идея метода таблично-волнового синтеза (Wave-Table) состоит в том, что в заранее подготовленных таблицах находятся образцы звуков для множества различных музыкальных инструментов. Данные звуковые образцы носят название сэмплов. Числовые коды, которые заложены в сэмпле, выражают такие его характеристики, как тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые компоненты среды, в которой наблюдается звучание, и другие параметры, характеризующие особенности звучания. Поскольку для образцов применяются реальные звуки, то качество закодированной звуковой информации получается очень высоким и приближается к звучанию реальных музыкальных инструментов, что в большей степени соответствует нынешнему уровню развития современной компьютерной техники.

Список использованной литературы

 

1. http://5fan.ru/wievjob.php?id=31634

2. http://ibrain.kz/informatika/sistemy-schisleniya

3. Информатика. Базовый  курс / Симонович В.Б. и др – глава 1

 

 


Информация о работе Математические основы информатики