Автор работы: Пользователь скрыл имя, 05 Июня 2012 в 12:04, курс лекций
Тема: «Информация и ее роль в современном обществе».
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ- НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ
ОСНОВНЫМ НЕДОСТАТКОМ РАСТРОВОЙ ГРАФИКИ ЯВЛЯЕТСЯ БОЛЬШОЙ ОБЪЕМ ПАМЯТИ, ТРЕБУЕМЫЙ ДЛЯ ХРАНЕНИЯ ИЗОБРАЖЕНИЯ. Это объясняется тем, что нужно запомнить цвет каждого пиксела, общее число которых может быть очень большим. Например, одна фотография среднего размера в памяти компьютера занимает несколько Мегабайт, т.е. столько же, сколько несколько сотен (а то и тысяч) страниц текста.
ПРИ ИСПОЛЬЗОВАНИИ ВЕКТОРНОЙ ГРАФИКИ В ПАМЯТИ ЭВМ СОХРАНЯЕТСЯ МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ КАЖДОГО ГРАФИЧЕСКОГО ПРИМИТИВА- ГЕОМЕТРИЧЕСКОГО ОБЪЕКТА (НАПРИМЕР, ОТРЕЗКА, ОКРУЖНОСТИ, ПРЯМОУГОЛЬНИКА И Т.П.), ИЗ КОТОРЫХ ФОРМИРУЕТСЯ ИЗОБРАЖЕНИЕ. В ЧАСТНОСТИ, ДЛЯ ОТРИСОВКИ ОКРУЖНОСТИ ДОСТАТОЧНО ЗАПОМНИТЬ ПОЛОЖЕНИЕ ЕЕ ЦЕНТРА, РАДИУС, ТОЛЩИНУ И ЦВЕТ ЛИНИИ. По этим данным соответствующие программы построят нужную фигуру на экране дисплея. Понятно, что такое описание изображения требует намного меньше памяти (в 10 - 1000 раз) чем в растровой графике, поскольку обходится без запоминания цвета каждой точки рисунка. ОСНОВНЫМ НЕДОСТАТКОМ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ НЕВОЗМОЖНОСТЬ РАБОТЫ С ВЫСОКОКАЧЕСТВЕННЫМИ ХУДОЖЕСТВЕННЫМИ ИЗОБРАЖЕНИЯМИ, ФОТОГРАФИЯМИ И ФИЛЬМАМИ. Природа избегает прямых линий, правильных окружностей и дуг. К сожалению, именно с их помощью (поскольку эти фигуры можно описать средствами математики, точнее- аналитической геометрии) и формируется изображение при использовании векторной графики. Попробуйте описать с помощью математических формул, картины И.Е.Репина или Рафаэля! (Но не "Черный квадрат" К.Малевича!) ПОЭТОМУ ОСНОВНОЙ СФЕРОЙ ПРИМЕНЕНИЯ ВЕКТОРНОЙ ГРАФИКИ ЯВЛЯЕТСЯ ОТРИСОВКА ЧЕРТЕЖЕЙ, СХЕМ, ДИАГРАММ И Т.П.
Как отличить векторную графику от растровой? Если Вы видите на экране фотографию или рисунок с близким к естественному изображением, с большим числом цветов и оттенков, то, скорее всего, Вы имеете дело с растровой графикой. Если чертеж, диаграмму, простой стилизованный рисунок,- с векторной. Если программа позволяет стирать, копировать или перемещать целые фрагменты (площади) изображения, то это растровая графика. Если удалить, скопировать, переместить можно только какие-то определенные фигуры или их части, то это графика векторная.
Пример изображения, созданного с использованием растровой графики:
Пример изображения, созданного с использованием векторной графики:
Файлы *.bmp , *.pcx , *.gif , *.msp , *.img и др. соответствуют форматам растрового типа, *.dwg , *.dxf , *.pic и др. - векторного.
Иногда, правда, растровые изображения могут входить в состав векторных как отдельные графические примитивы.
Устройства обработки информации и управляющие устройства.
ОСНОВНЫМ УСТРОЙСТВОМ ОБРАБОТКИ ИНФОРМАЦИИ В ЭВМ ЯВЛЯЕТСЯ АРИФМЕТИКО-ЛОГИЧЕСКОЕ УСТРОЙСТВО (АЛУ). ЕГО ОСНОВОЙ ЯВЛЯЕТСЯ ЭЛЕКТРОННАЯ СХЕМА, СОСТАВЛЕННАЯ ИЗ БОЛЬШОГО ЧИСЛА ТРАНЗИСТОРОВ, НАЗЫВАЕМАЯ СУММАТОРОМ. СУММАТОРОМ ВЫПОЛНЯЮТСЯ ПРОСТЕЙШИЕ ЛОГИЧЕСКИЕ И АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД ДАННЫМИ, ПРЕДСТАВЛЕННЫМИ В ВИДЕ ДВОИЧНЫХ КОДОВ (НУЛЕЙ И ЕДИНИЦ). К логическим операциям относятся логическое умножение (операция "И"), логическое сложение (операция "ИЛИ") и логическое отрицание (операция "НЕ"). Результатом операции логического умножения является 1, если все переменные, являющиеся исходными данными равны 1, и 0, если хотя бы одна из них равна 0. Вспоминая, что 1 моделируется электрическим сигналом, а 0 - отсутствием сигнала, можно сказать, что на выходе устройства будет электрический сигнал тогда и только тогда, когда сигнал будет иметься на каждом входе:
Представьте себе, что подобное устройство осуществляет управление каким-либо процессом, например, пуском ракеты. От каждого исправного блока ракеты на устройство управления стартом должен прийти контрольный сигнал, и только в этом случае оно может выдать сигнал, разрешающий запуск.
Результатом операции логического сложения является 0, если все исходные переменные равны нулю, и 1, если хотя бы одна из них равна 1. Результатом операции логического отрицания является 1, если на входе- 0, и 0, если на входе -1.
На основе этих трех операций можно производить арифметические действия над числами, представленными в виде нулей и единиц. Теоретической основой для этого являются законы, разработанные еще в 1847 году ирландским математиком Джорджем Булем, известные как Булева алгебра, в которой используются только два числа- 0 и 1. Ранее считалось, что эти работы Буля никому не нужны, и их автор подвергался насмешкам. Однако, в 1938 году американский инженер Клод Шеннон положил Булеву алгебру в основу теории электрических и электронных переключательных схем- сумматоров, создание которых и привело к появлению ЭВМ, способных автоматически производить арифметические вычисления.
ВСЕ ОСТАЛЬНЫЕ ОПЕРАЦИИ, ПРОИЗВОДИМЫЕ ЭВМ, СВОДЯТСЯ К БОЛЬШОМУ ЧИСЛУ ПРОСТЕЙШИХ АРИФМЕТИЧЕСКИХ И ЛОГИЧЕСКИХ ОПЕРАЦИЙ, аналогично тому, как операцию умножения можно свести к большому числу операций сложения.
Иногда компьютеры называют "умными машинами". Мы видим, что это не совсем так. Компьютеры лишь выполняют простейшие арифметические и логические операции. Весь "интеллект" компьютера заключается не столько в нем самом, сколько в программах, которые сводят самые сложные действия к большому (как правило, очень большому) числу таких простейших арифметических и логических операций. Именно поэтому, производительность процессора при выполнении простейших операций определяет быстродействие ЭВМ.
В СОВРЕМЕННЫХ ЭВМ АРИФМЕТИКО-ЛОГИЧЕСКОЕ УСТРОЙСТВО ОБЪЕДИНЯЕТСЯ С УПРАВЛЯЮЩИМИ УСТРОЙСТВАМИ В ЕДИНУЮ СХЕМУ - ПРОЦЕССОР.
ПРОЦЕССОР- ЦЕНТРАЛЬНАЯ МИКРОСХЕМА ЭВМ, ОСУЩЕСТВЛЯЮЩАЯ ОПЕРАЦИИ ПО ОБРАБОТКЕ ИНФОРМАЦИИ И УПРАВЛЯЮЩАЯ РАБОТОЙ ОСТАЛЬНЫХ УСТРОЙСТВ ЭВМ.
Процессор представляет собой микросхему с большим числом контактов, имеющую прямоугольную или квадратную форму и легко помещающуюся на ладони.
Изобретателем микропроцессора как схемы, в которую собрана практически вся основная электроника компьютера, стала американская фирма INTEL, выпустившая в 1970 году процессор 8008. С их появления и началась история ЭВМ четвертого поколения.
По настоящее время фирма INTEL является лидером на мировом рынке в производстве и разработке новых типов процессоров. Основой для современных компьютеров стали процессоры семейства 8086:
1) процессор 8086 и его упрощенный вариант 8088, выпущенные в 1981 году,
2) процессор 80286, выпущенный в 1984 году,
3) процессор 80386, выпущенный в 1986 году,
4) процессор 80486, выпущенный в 1989 году,
5) процессор PENTIUM (греч. -пятый), выпущенный в 1993 году.
Фирма INTEL анонсировала еще на 1995 год выпуск принципиально иного процессора MERCED, однако вместо него появились процессоры, являющиеся развитием процессоров PENTIUM - PENTIUM PRO, PENTIUM II, PENTIUM III и др.
Важно отметить, что производство процессоров, в отличие от производства многих других компонентов компьютера- плат, корпусов, клавиатур и др. является чрезвычайно сложным и освоено только очень небольшим числом фирм-производителей. Однако все они, хоть и конкурируют с фирмой INTEL, ориентируются на ее продукцию. Например, фирма AMD выпускала процессор К5- более мощный и дешевый аналог процессора PENTIUM и процессор К6 - аналог PENTIUM II.
СОПРОЦЕССОР- УСТРОЙСТВО, УСКОРЯЮЩЕЕ РАБОТУ ПРОЦЕССОРА ПРИ ВЫПОЛНЕНИИ МАТЕМАТИЧЕСКИХ ВЫЧИСЛЕНИЙ. ЕГО НАЛИЧИЕ НЕОБЯЗАТЕЛЬНО, НО ДЛЯ РАБОТЫ РЯДА ПРОГРАММ (ГРАФИЧЕСКИХ ИЛИ РАСЧЕТНЫХ) ОН НЕОБХОДИМ.
Честь создания
сопроцессоров также
1) сопроцессор 8087 - для совместной работы с процессором 8086,
2) сопроцессор 80287 - для совместной работы с процессором 80286,
3) сопроцессор 80387 - для совместной работы с процессором 80386, и.т.д.
В ПОСЛЕДНИХ
МОДЕЛЯХ ЭВМ СОПРОЦЕССОР
ЛЕКЦИЯ
№ 5
Устройства ввода и вывода можно условно разделить на устройства, с помощью которых информация передается машине от человека, человеку от машины и от одной машины другой машине:
Здесь указаны только наиболее распространенные устройства. Кроме них имеются специальные устройства, обеспечивающие совместную работу ЭВМ с кассовыми аппаратами, микрофонами, видеокамерами, видеомагнитофонами, медицинскими и научными приборами и т.п.
Клавиатура- основное устройство ввода информации. Расположение латинских букв на ней соответствует расположению клавиш на латинской печатной машинке (т.н. клавиатура QWERTY- по первым буквам в верхнем ряду), русских букв- русской печатной машинке.
СКАНЕР- УСТРОЙСТВО
ДЛЯ ВВОДА ГРАФИЧЕСКОЙ
УСТРОЙСТВА МЕСТОУКАЗАНИЯ
ПРЕДНАЗНАЧЕНЫ ДЛЯ ВВОДА
Трекбол - это своеобразная "мышь вверх ногами". Он представляет собой шарик, как правило встраиваемый в клавиатуру, который вращают пальцами. Трекбол обычно используют в переносных компьютерах- ноутбуках (англ. notebook - записная книжка).
Джойстик- манипулятор, выполняемый в виде рычажка (ручки) на массивном основании. Управляющие сигналы вырабатываются движениями ручки и нажатием кнопки (или кнопок) на ней. Джойстики, как правило используют для работы с игровыми программами.
Графический планшет (дигитайзер или диджитайзер- англ. digitizer -оцифровыватель)- планшет, покрытый сеткой пьезоэлементов- элементов, вырабатывающих электрический ток при механическом воздействии. На нем размещают лист бумаги с изображением и надавливанием на определенные точки на нем вводят их координаты в компьютер. Дигитайзеры, как правило, используются для ввода карт или планов в ЭВМ.
Световым пером таккже указываются координаты определенной точки, но непосредственно на экране дисплея. На его конце имеется фотоэлемент. Им при поднесении к экрану фиксируется момент попадания на него электронного луча, формирующего изображение (как известно, этот электронный луч несколько раз в секунду обегает все точки поверхности экрана). На основе этого вычисляются координаты точки, к которой поднесено световое перо в данный момент времени.
ДИСПЛЕЙ (МОНИТОР) - ОСНОВНОЕ УСТРОЙСТВО ВЫВОДА ИНФОРМАЦИИ. ДИСПЛЕИ БЫВАЮТ ОСНОВАННЫМИ НА ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКЕ (ОБЫЧНОМ КИНЕСКОПЕ) ИЛИ ЖИДКИХ КРИСТАЛЛАХ (LCD, англ. Liquid Crystal Display). КРОМЕ ТОГО РАЗЛИЧАЮТ ЦВЕТНЫЕ И МОНОХРОМНЫЕ (ОДНОЦВЕТНЫЕ) ДИСПЛЕИ.
В настоящее время на дисплей приходится значительная доля стоимости компьютера. Монохромные дисплеи дешевле цветных, поэтому, если Вы не работаете с графикой, их покупка может быть целессообразной. Недаром такие дисплеи можно часто увидеть в банках, центрах управления сложными системами и т.п. Кстати, работа на монохромных дисплеях с оранжевым и зеленым цветами считаются наименее утомительной для глаз.
Чем отличается дисплей компьютера от обыкновенного телевизора?
Во-первых, телепрограммы передаются телецентром непрерывно - каждую секунду 24 кадра, чтобы зрители могли постоянно видеть изображение на экране. Когда процессор выдает команду что-то вывести на экран, сформированное изображение необходимо также несколько раз в секунду передавать на дисплей, иначе человек ничего не успеет увидеть. Поэтому изображение нужно запомнить и передавать на экран независимо от процессора, который в это время может выполнять другие операции. Эти функции выполняет специальное устройство- видеоадаптер, играющий роль своеобразного телецентра, формирующего, хранящего и передающего изображения на экран дисплея. Видеоадаптер представляет собой плату, которая вставляется в корпус компьютера (в системный блок). Дисплей подключается непосредственно к ней. На этой плате находятся, в частности, схемы видеопамяти, в которых запоминается изображение, выводимое на экран.