Автор работы: Пользователь скрыл имя, 10 Сентября 2015 в 12:34, курс лекций
Работа содержит конспект лекций по дисциплине «Сетевые технологии».
Другими словами полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений.
В принципе, знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амплитудно-частотной характеристики, но с другой стороны эта характеристика линии очень удобна для проведения технических расчетов. Как мы увидим ниже, ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи. Именно этот факт нашел отражение в английском варианте рассматриваемого термина bandwidth.
Но это не все характеристики не подключенного кабеля. Существуют еще несколько очень даже не маловажных по информационной сути характеристик - затухание (attenuation), помехоустойчивость, перекрестные наводки на ближнем конце линии. Сейчас мы рассмотрим каждую из них.
Затухание определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частотной характеристики линии. Часто при эксплуатации линии заранее известна основная частота передаваемого сигнала. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по линии сигналов. Более точные оценки возможны при знании затухания на нескольких частотах.
Затухание (А) обычно измеряется в децибелах (дБ, decibel - dB) и вычисляется по следующей формуле:
А = 10 log10Рвых/Рвх,
где Рвых - мощность сигнала на выходе линии, Рвх - мощность сигнала на входе линии.
Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной. На практике берут абсолютное значение затухания, без указания знака. Например, кабель на витой паре категории 5 характеризуется затуханием не ниже 23,6 дБ для частоты 100Мгц при длине кабеля 100 м.
Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.
Полоса пропускания зависит от типа линии и ее протяженности. Ниже показаны полосы пропускания линий связи различных типов, а также наиболее часто используемые в технике связи частотные диапазоны.
Рис. 4.12 Полосы пропускания линий связи различных типов
Помехоустойчивость и перекрестные наводки на ближнем конце линии.
Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помех и средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.
Перекрестные наводки на ближнем конце (Near End Cross Talk - NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал.
Показатель NEXT, выраженный в децибелах, равен
NEXT=10 log10 Рвых/Рнав,
где Рвых - мощность выходного сигнала, Рнав- мощность наведенного сигнала.
Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары категории 5 показатель NEXT должен быть меньше 27 дБ на частоте 100 МГц. Показатель NEXT обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одной экранированной жилы) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вследствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколь-нибудь заметных помех друг для друга.
В связи с тем, что в некоторых новых технологиях используется передача данных одновременно по нескольким витым парам, в последнее время стал применяться показатель PowerSUM, являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передающих пар в кабеле.
Вот такие основные характеристики линии связи, которая не подключенная к сети. При знакомстве с характеристиками линий связи мы с вами говорили о синусоидальных сигналах определенной частоты, но следует подчеркнуть, что большая часть сигналов, которые используются в компьютерных сетях, имеет сложную несинусоидальную форму. Несинусоидальные сигналы сложнее и по техническим возможностям определения их параметров. Например, мы определили, что линия имеет полосу пропускания 1МГц. На вход этой линии, подключенной в сети, поступает несинусоидальный информационный сигнал, как нам определить сможет ли эта линия пропустить его и если да, то с какой скоростью? Для этого нам нужно еще намного вспомнить физики. Как мы уже говорили, каждый сигнал описываются в виде математической модели, у сложных сигналов - сложные математические модели. Поэтому удобнее описывать их с помощью относительно простых математических моделей. Одним из наиболее подходящих способов описания электрических сигналов сложной формы является их представление рядом Фурье.
Сущность представления Фурье состоит в следующем: любой электрический сигнал u(t) (любой формы) на произвольно заданном интервале времени можно представить как сумму нескольких простых синусоидальных сигналов, которые имеют математическое описание:
uk(t) = Umk*sin(kw t + jk) (4.5)
с амплитудами Umk, частотами k*w и начальными фазами jk.
Итак, для любого электрического сигнала можно записать
U(t) = Uо + Um1*sin(wt + j1) + Um2*sin(2*wt + j2) + Um3*sin(3wt + j3) + ...
+ Umk*sin(kwt + jk)
Слагаемое Uo называется постоянной составляющей сигнала. Слагаемые, входящие под знак суммы, называются гармониками.
Гармоническое колебание основной частоты w называется первой гармоникой – Um1*sin(wt + j1), колебание с частотой 2*w - второй – Um2*sin(2*wt + j2) и т. д.
Таким образом, электрический сигнал сложной формы можно задать путем указания значений его постоянной составляющей, амплитуд и фаз всех его гармоник.
Для каждой гармоники частота определяется как: w=2p/T, где Т - период синусоидального сигнала гармоники. Если известен период гармонической составляющей, (синусоидального сигнала) то можно найти ее частоту.
На рис. 4.13 показано как сложный периодический процесс можно представить в виде синусоидальных колебаний различных частот и различных амплитуд.
Рис. 4.13 Представление периодического сигнала суммой синусоид с различной частотой
Зная частоту и амплитуду каждой гармоники можно построить спектр сигнала. Набор всех гармоник называют спектральным разложением исходного сигнала. Непериодические сигналы можно представить в виде интеграла (суммы) синусоидальных сигналов с непрерывным спектром частот. Эти спектры можно наглядно представить графически, откладывая по оси абсцисс значения угловой частоты, а по оси ординат значения амплитуд гармоник. Так, например, спектральное разложение идеального импульса (единичной мощности и нулевой длительности) имеет составляющие всего спектра частот от -¥ до +¥. Для сигналов, которые хорошо описываются аналитически (прямоугольные импульсы одинаковой длительности и амплитуды) спектр легко вычисляется по формулам Фурье.
Для сигналов произвольной формы спектр находят с помощью специальных приборов, которые измеряют спектр реального сигнала и отображают амплитуды составляющих гармоник.
Полезной характеристикой любого сигнала является также ширина его спектра - интервал на шкале частот, в котором располагаются все спектральные линии периодического сигнала или на котором отлична от нуля спектральная плотность непериодического сигнала. Если этот интервал частот конечен, то говорят, что сигнал имеет ограниченный спектр. В противном случае спектр называют неограниченным. Например, спектр периодической последовательности прямоугольных импульсов является неограниченным. Это обусловлено тем, что для этого сигнала нельзя указать наивысшую частоту - амплитуды всех его гармоник в общем случае отличны от нуля.
При передаче импульсных сигналов, характерных для компьютерных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму. Поэтому на приемном конце линии сигналы могут плохо распознаваться (См. рис. 4.14).
Рис. 4.14 Искажение импульсов в линии связи
В передающей линии искажаются не только импульсные сигналы, но и синусоиды какой-либо частоты. В результате происходит искажение всего передаваемого сигнала любой формы. Именно поэтому АЧХ реального сигнала не имеет правильной формы.
4.3.2Характеристики реальной линии связи
Итак, теперь перед нами следующая задача: определить какие частоты сигналов может пропускать определенная линия связи с определенной полосой пропускания. Чем выше значение частоты, которую может пропускать линия связи, тем она лучше. Каким образом можно определить скорость работы кабеля?
В компьютерной сети в основном присутствуют сигналы сложной формы (непериодические, несинусоидальные). На практике такие сигналы представляют с помощью ряда Фурье (спектральное представление).
Целью разложения сложного сигнала методом Фурье является облегчение технических расчетов параметров электрического сигнала и представление его как можно близким к реальному виду. Чем больше сигнал похож на синусоиду, тем меньше синусоид понадобится для разложения его в ряд Фурье, тем меньше гармоник будет иметь этот сигнал в разложении Фурье, тем уже ширина его спектра.
Например, на рис. 4.15 показан пример формы сигнала, приходящего на вход линии. Определим связь между частотой сигнала и полосой пропускания линии связи.
Рис. 4.15 Пример входного сигнала
Для того, чтобы решить эту задачу необходимо:
Чем уже спектр сигнала, тем легче "втиснуть" в полосу пропускания линии, следовательно, тем выше скорость передачи этого сигнала в этой линии.
Если частоты первых гармоник сигнала (основные частоты, которые вносят основной вклад в вид результирующего сигнала) входят в полосу пропускания линии, то входной сигнал пройдет с наименьшими искажениями (см. рис.4.16,А).
Если же значимые гармоники выходят за границы полосы пропускания линии связи, то сигнал будет значительно искажаться. Чем меньше частот входного сигнала принадлежит полосе пропускания линии, тем более вероятно, что линия этот сигнал пропускать не будет, или будет, но с очень большими искажениями (см. рис.4.16,Б).
А
Рис. 4.16 Соответствие между полосой пропускания и спектром сигнала
Таким образом, каждая линия характеризуется некоторой скоростью передачи данных, которая зависит не только от параметров самой линии (АЧХ, полосы пропускания), но и от параметров передаваемого электрического сигнала. Чем уже ширина спектра (чем меньше гармоник у исходного сигнала), тем выше и скорость его передачи. И наоборот, чем шире спектральный диапазон сигнала, тем труднее его передача, следовательно, меньше и скорость.
Максимально возможная скорость передачи данных по линии связи называется пропускной способностью линии.
Пропускная способность подразумевает скорость линии связи. Эта скорость измеряется в бит/сек, а также Кбит/с, Мбит/с, Гбит/с и т.д.
Как же определить, какие скорости нужны линии при известных характеристиках сигнала? Ведь нужно обеспечить передачу исходного сигнала в любом случае, и если реальный его спектр выходит за пределы полосы пропускания линии, нужно представить его в таком виде, в котором передача будет все-таки не просто возможна, но возможна без существенных искажений.
Для того чтобы обеспечить передачу информации от компьютера к компьютеру по линиям связи, необходим некоторый способ ее представления. Выбор способа представления дискретной информации в виде сигналов, подаваемых на линию связи, называется физическим или линейным кодированием. От выбранного способа кодирования и будет зависеть спектр передаваемых сигналов и, соответственно, пропускная способность линии. Таким образом, для одного способа кодирования линия может обладать одной пропускной способностью, а для другого - другой.
При выборе способа кодирования для какой-либо последовательности сигналов можем определить следующее:
Информация о работе Конспект лекций по дисциплине «Сетевые технологии»