Автор работы: Пользователь скрыл имя, 11 Мая 2014 в 18:28, реферат
Электронная вычислительная машина (ЭВМ), компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.
Во всех современных компьютерах применяется логическая система, изобретения Джорджем Булем.
Электронная вычислительная машина (ЭВМ), компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.
Во всех современных компьютерах применяется логическая система, изобретения Джорджем Булем.
С развитием электроники появился такой класс электронной техники, как цифровая. Цифровая техника включает в себя такие устройства как триггеры, регистры, счётчики, комбинационные устройства, программируемые логические интегральные схемы и др.
Средством обработки двоичных сигналов в ЭВМ являются логические элементы.
Логический элемент компьютера — это часть электронной логической схемы с одним или несколькими входами и одним выходом, черех которую проходят электрические сигналы, представляющие 0, 1.
К таким устройствам относятся такие типовые логические устройства как триггер, сумматор, полусумматор, шифратор, дешифратор и счётчик. Они предназначены для формирования, обработки и передачи электрических импульсных сигналов и перепадов напряжения и тока, а также для управления информацией и её хранения одном бите, то есть 0 или 1.
В зависимости от способа кодирования логического уровня «0» или «1» различают:
- Потенциальный. Двум значениям переменной «0» и «1» соответствуют высокий и низкий уровни напряжения в соответствующей точке схемы машины (потенциальный код). Потенциальный сигнал сохраняет постоянный уровень (нулевой или единичный) в течение периода представления информации (такта), а его значение в переходные моменты не является определенным .
- Импульсный. Двоичные переменные «0» и «1» представляются, как правило, наличием и отсутствием электрических импульсов ( напряжения или тока) определенной длительности. Наличие импульса воспринимается здесь за единицу, отсутствие его - за нуль. С переменой кода происходит изменение уровня электрического сигнала в дискретные моменты времени. Временной интервал между этими моментами времени называют тактом или периодом представления информации.
- Импульсно-потенциальный. Комбинируются оба способа кодирования «0» и «1».
Память (устройство, предназначенное для хранения данных и команд) является важной частью компьютера. Можно сказать, что она его и определяет: если вычислительное устройство не имеет памяти, то оно уже не компьютер.
Элементарной единицей компьютерной памяти является бит. Поэтому требуется устройство, способное находиться в двух состояниях, т.е. хранить единицу или ноль. Также это устройство должно уметь быстро переключаться из одного состояния в другое под внешним воздействием, что дает возможность изменять информацию. Ну и наконец, устройство должно позволять определять его состояние, т.е. предоставлять во вне информацию о своем состоянии.
В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.
Вентиль - это устройство, которое выдает результат булевой операции от введенных в него данных (сигналов).
Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль НЕ.
Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.
Выходной сигнал вентиля можно выражать как функцию от входных.
Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.
Рис1. Вентили
Устройством, способным запоминать, хранить и позволяющим считывать информацию, является триггер. Он был изобретен в начале XX века Бонч-Бруевичем.
Разнообразие триггеров весьма велико. Наиболее простой из них так называемый RS-триггер, который собирается из двух вентилей. Обычно используют вентили ИЛИ-НЕ или И-НЕ.
RS-триггер «запоминает», на какой его вход подавался сигнал, соответствующий единице, в последний раз. Если сигнал был подан на S-вход, то триггер на выходе постоянно «сообщает», что хранит единицу. Если сигнал, соответствующий единице, подан на R-вход, то триггер на выходе имеет 0. Не смотря на то, что триггер имеет два выхода, имеется в виду выход Q. (Q с чертой всегда имеет противоположное Q значение.)
Другими словами, вход S (set) отвечает за установку триггера в 1, а вход R (reset) – за установку триггера в 0. Установка производится сигналом, с высоким напряжением (соответствует единице). Просто все зависит от того, на какой вход он подается.
Большую часть времени на входы подается сигнал равный 0 (низкое напряжение). При этом триггер сохраняет свое прежнее состояние.
Возможны следующие ситуации:
Ситуация, при которой на оба входа подаются единичные сигналы, недопустима.
Как триггер сохраняет состояние? Допустим, триггер выдает на выходе Q логический 0. Тогда судя по схеме, этот 0 возвращается также и в верхний вентиль, где инвертируется (получается 1) и уже в этом виде передается нижнему вентилю. Тот в свою очередь снова инвертирует сигнал (получается 0), который и имеется на выходе Q. Состояние триггера сохраняется, он хранит 0.
Теперь, допустим, был подан единичный сигнал на вход S. Теперь в верхний вентиль входят два сигнала: 1 от S и 0 от Q. Поскольку вентиль вида ИЛИ-НЕ, то на выходе из него получается 0. Ноль идет на нижний вентиль, там инвертируется (получается 1). Сигнал на выходе Q становится соответствующим 1.
Рис.2 Временная диаграмма работы динамического триггера.
Рис.3 Триггер
Динамическими
параметрами триггера являются:
- время задержки распространения сигнала при
включении
и выключении
триггера, а также среднее время задержки
распространения сигнала
- минимальная длительность входного сигнала (импульса)
при которой еще происходит переключение
триггера;
- разрешающее время триггера
- минимально допустимый временной интервал
между двумя последовательными входными
сигналами минимальной длительности,
вызывающими переключение триггера;
- максимальная частота переключения триггера
Минимальная длительность входного сигнала
равна
, где m - количество логических элементов
в цепи от входа информационного или синхросигнала
до входа элемента, на котором замыкается
триггерное кольцо обратной связи,
- среднее время задержки распространения
сигнала в логическом элементе.
Среднее время задержки распространения сигнала
в триггере равно
,где n – количество логических элементов
в цепи от входа информационного или синхросигнала
до выхода элемента, на котором подтверждается
состояние триггера.
Динамические параметры определяют быстродействие триггера.
Функциональный Узел ЭВМ-совокупность электрических соединений эл-ов ЭВМ, предназначенных для выполнения микроопераций над словом (или словами) определённой разрядности. К типовым узлам относят: регистры, счетчики, сумматоры. Все они также принадлежат к регулярным структурам, состоящим из одинаковых параллельно работающих одноразрядных схем.
Регистром называется узел, предназначенный для приема, временного хранения и выдачи машинного слова. Регистры могут также использоваться для некоторых операций преобразования данных: для сдвига кода числа (слова) на определенное число разрядов влево или вправо, для преобразования последовательного кода числа в параллельный и наоборот и т.д. Эти дополнительные функции регистров обеспечиваются путем усложнения схем хранения, выбора более сложных триггеров и подключения дополнительных логических схем на их входах и выходах.
Таким образом, регистры представляют собой совокупность триггеров, число которых соответствует числу разрядов в слове, и вспомогательных схем, обеспечивающих выполнение различных операций над словом.
Рис. 4 Параллельный регистр.
Счетчик - узел ЭВМ, позволяющий осуществлять подсчет поступающих на его вход сигналов и фиксацию результата в виде многоразрядного двоичного числа. Счетчик, состоящий из n-триггеров, дает возможность подсчитывать до N сигналов, связанных зависимостью:
n = log2 N или N = 2".
В ЭВМ счетчики используются для подсчета импульсов, сдвигов, формирования адресов и т.д. Функционально различают суммирующие, вычитающие, реверсивные счетчики. Они также отличаются друг от друга логикой работы дополнительных логических элементов, подключаемых к триггерам.
В основу построения любого
счетчика положено свойство Т-триггеров
изменять свое состояние при подаче очередного
сигнала на счетный вход Т.
Рис. 5 Счетчик с параллельным переносом
Сумматор - узел ЭВМ, в котором суммируются коды чисел. Как правило, любой сумматор представляет собой комбинацию одноразрядных сумматоров. Сумматоры различают по принципам построения: накапливающего типа и комбинационного типа. Сумматоры накапливающего типа строят на сложных JKRS-триггерах, дополняя их выходы достаточно сложными схемами формирования и распространения переносов. Процесс сложения при этом осуществляется поэтапно. Сначала на триггерах сумматора фиксируется код первого операнда, затем на счетные коды разрядов подается код второго операнда. По зависимостям (3.3) на каждом триггере формируются одноразрядные суммы и значения переносов между разрядами. Учет возникающих переносов задерживает формирование окончательного результата суммы и может требовать дополнительных тактов сложения. Из-за этого многоразрядные схемы сумматора накапливающего типа используются достаточно редко.
Более часто для построения сумматоров используются сумматоры комбинационного типа. Обычно у такого сумматора на входе и выходе имеются регистры для хранения и преобразования кодов операндов и результата
Регистр Рг1 предназначается для хранения кода первого операнда, регистр Рг2 - для хранения кода второго операнда. Сумматор по сигналам из устройства управления настраивается на выполнение определенной машинной операции, соответствующей коду операции, находящемуся в коде команды. Результат выполняемой операции фиксируется в регистре РгЗ . При необходимости этот результат может использоваться для продолжения вычислений. Для этого предусматривается возможность перезаписи содержимого регистра РгЗ на Рг1 в качестве значения одного из операндов при выполнении очередной операции.
Рис. 5 Сумматор
Дешифраторами называются комбинационные устройства, преобразующие n-разрядный двоичный код в логический сигнал, появляющийся на том выходе, десятичный номер которого соответствует двоичному коду.
Дешифратор работает по следующему принципу: пусть дешифратор имеет N входов, на них подано двоичное слово xN-1xN-2...x0, тогда на выходе будем иметь такой код разрядности меньшей или равной 2^N, что разряд, номер которого равен входному слову, принимает значение единицы, все остальные разряды равны нулю. Очевидно, что максимально возможная разрядность выходного слова равна 2^N. Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше 2^N, и дешифратор является неполным.
Часто дешифраторы дополняются входом разрешения работы E. Если на этот вход поступает единица, то дешифратор функционирует, в ином случае на выходе дешифратора вырабатывается логический ноль вне зависимости от входных сигналов
Существуют дешифраторы с инверсными выходами, у такого дешифратора выбранный разряд показан нулем.
Функционирование дешифратора
описывается системой конъюнкций:
Обратное преобразование осуществляет шифратор.
Дешифраторы - это комбинационные схемы с несколькими входами и выходами, преобразующие код, подаваемый на входы в сигнал на одном из выходов. На выходе дешифратора появляется логическая единица, на остальных — логические нули, когда на входных шинах устанавливается двоичный код определённого числа или символа, то есть дешифратор расшифровывает число в двоичном, троичном или k-ичном коде, представляя его логической единицей на определённом выходе. Число входов дешифратора равно количеству разрядов поступающих двоичных, троичных или k-ичных чисел. Число выходов равно полному количеству различных двоичных, троичных или k-ичных чисел этой разрядности.
Для n-разрядов на входе, на выходе 2n, 3n или kn. Чтобы вычислить, является ли поступившее на вход двоичное, троичное или k-ичное число известным ожидаемым, инвертируются пути в определённых разрядах этого числа. Затем выполняется конъюнкция всех разрядов преобразованного таким образом числа. Если результатом конъюнкции является логическая единица, значит на вход поступило известное ожидаемое число.
Из логических элементов являющихся дешифраторами можно строить дешифраторы на большое число входов. Каскадное подключение таких схем позволит наращивать число дифференцируемых переменных.
Рис. 6 Пример дешифратора
Заключение
Триггеры подразделяются на две большие группы — динамические и статические. Названы они так по способу представления выходной информации. Статические (потенциальные) триггеры, в свою очередь, подразделяются на две неравные по практическому значению группы — симметричные и несимметричные триггеры. Оба класса реализуются на двухкаскадном усилителе с положительной обратной связью, а названием своим они обязаны способам организации внутренних электрических связей между элементами схемы. Статистические триггеры могут классифицироваться двумя способами: функциональный и по вводу информации..