ЭЕМ- нің архитектурасының негізгі түсініктері

Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 19:27, реферат

Краткое описание

Төрт арифметикалық амалдарлы автоматты түрде орындайтын бірінші машина XVII ғасырда пайда болды. 1623 жылы сандарды қосып не азайтып қана қоймай, оларды кейде көбейтіп және бөле алатындай машинаны өнертапқыш Вильгельм Шиккард жасап шығарды. 1642 жылы француздың философы және ғалымы Блез паскаль кеңсенің есептерін механикалық тұрғыдан есептеуге арналған арифмометр жасады. 1674 жылы немістің философы және математигі Готфрид Лейбниц Паскаль машинасының мүмкіндігін кеңейтті. Ол жасаған «Лейбництің тісті дөңгелегі» деп аталатын машинасы екілік санау жүйесінде көбейту, бөлу және түбір табу амалдарын орындайтын еді. XIX ғасырда ағылшын математигі Ч.Бэббидж «Аналитикалық машина» деп аталатын программаланатын автоматты есептеу құрылғысының нұсқасын жасады. Программалар кодталып перфокарталарға түсірілді.

Содержание

Кіріспе
ЭЕМ архитектурасының тарихы
Негізгі бөлім:
а) Компьютер негізгі құрылғылары
б) Компьютерің құрылысы
Қорытынды
Қазіргі замандағы компьютердің маңызы

Прикрепленные файлы: 1 файл

компьютердің тарихы.docx

— 673.81 Кб (Скачать документ)

ЭЕМ- нің  архитектурасының негізгі түсініктері

 

Жоспар:

 

Кіріспе

ЭЕМ архитектурасының тарихы

Негізгі бөлім:

а) Компьютер негізгі құрылғылары

б) Компьютерің құрылысы

Қорытынды

Қазіргі замандағы компьютердің маңызы

 

 

 

 

 

 

 

 

 

 

 

Төрт арифметикалық амалдарлы  автоматты түрде орындайтын бірінші  машина XVII ғасырда пайда болды. 1623 жылы сандарды қосып не азайтып қана қоймай, оларды кейде көбейтіп және бөле алатындай машинаны өнертапқыш Вильгельм Шиккард жасап шығарды. 1642 жылы француздың философы және ғалымы Блез паскаль кеңсенің есептерін  механикалық тұрғыдан есептеуге  арналған арифмометр жасады. 1674 жылы немістің философы және математигі Готфрид Лейбниц  Паскаль машинасының мүмкіндігін  кеңейтті. Ол жасаған «Лейбництің тісті дөңгелегі» деп аталатын машинасы екілік санау жүйесінде көбейту, бөлу және түбір табу амалдарын орындайтын еді. XIX ғасырда ағылшын математигі Ч.Бэббидж «Аналитикалық машина» деп аталатын программаланатын автоматты есептеу құрылғысының нұсқасын жасады. Программалар кодталып перфокарталарға түсірілді. Бұл әдісті Бэббидж тоқыма станоктарындағы амалдарды бақылауға алғаш пайдаланған француз өнертапқышы Ж.Жаккардтан алды. Бэббидждің ойынша бұл командалар жұбын және мәліметтерден тұратын топтарын бірте-бірте енгізгенде автоматты түрде әр түрлі есептеулер орындауы тиіс еді. Картадағы тесіктердің орналасу тәртібін және карталардың келу ретін өзгертіп, есептеу ретін өзгертуге болатын еді (басқаруды шартты түрде беру идеясы!). Жобаның меценаты (қамқоршысы) – белгілі ақын Джорж Байронның қызы графиня Ада Лавлейс (Ada Lovelace) осы «аналитикалық машинаның» программисті болды. Ондық жүйенің орнына екілік жүйені қолдану қажеттілігіне Бэббидждің көзін жеткізген сол Ада Лавлейс болды. Ол осы күнге дейін көкейтесті болып келетін программалаудың негізгі принциптерін жасады. Оның құрметіне 1979 жылы жасап шығарған алгоритмдік тіл Ada – деп аталды. ХІХ ғасырдың екінші жартысында Герман Холлерит перфокарталарды сұрыптауға және санауға арналған бірінші электромеханикалық машинаны жасап шығарды. Табулятор деп аталатын бұл машина реледен, санағыштан және сұрыптаушы жәшіктен тұрды. Бұл машина 1890 жылы Америкада тұрғындардың санағын өңдеуге қолданылды. Холлерит 1896 жылы әйгілі IBM фирмасының негізі болатын фирманы ашты. Екінші дүниежүзілік соғыс есептеу құрылғыларын және оларды өндіру технологиясын жетілдіруге дем берді. 1944 жылы Говард Айкен IBM-нің бір топ зерттеушілері релелік логикалық элементтерге негізделген электрлік есептеуіш машинасын жасады. 1943 жылдан 1946 жылға дейін Пенсильвания қаласындағы (АҚШ) университетте ENIAK деп аталатын түгелімен бірінші электронды – цифрлық ЭЕМ құрастырылды. Машина 30 тонна тартты, 200 кв.м. жерді алып жатты, 18 мың лампадан тұрды. Оның жұмыс істеуінде ондық жүйе қолданылды. Программадағы командалар қолмен енгізілді; программаны енгізгеннен кейін орындалу тәртібі тек бүкіл программа орындалып болғаннан кейін ғана өзгертуге болатын еді. Әрбір жаңа программа ажыратқыштарды және алынып-салынатын коммуникацияларды орнату арқылы жүзеге асатын жаңа сигналдар комбинациясын қажет етті. Нәтижесінде ең қарапайым программаны құрып, орындау үшін өте көп уақыт қажет болды. ENIAK машинасында программалаудағы қиындықтар осы жобаның бұрынғы консультанты Джон фон Нейманның (1903-1957) ЭЕМ архитектурасын жасаудың жаңа принциптерін жасауына түрткі болды. Ол программаны, басқару командаларының тізбегін ЭЕМ-нің жадысында сақтауды ұсынды. Өз баяндамасында фон Нейман компьютердің бес базалық элементін атап көрсетті: арифметикалы-логикалық құрылғы (АЛҚ), басқару құрылғысы (БҚ), есте сақтау құрылғысы (ЕСҚ), ақпаратты енгізу және шығару құрылғылары. ЭЕМ-нің осы құрлысын фон Нейман архитектурасы деп атау келісілген. Бұл принциптер жаңа EDVAC ЭЕМ-де жасалды. Мұнда екілік арифметика қолданылды, негізгі жады 102444 — разрядты сөзді сақтай алатын болды. Бұл ЭЕМ 1951 жылы пайдалануға берілді. ЭЕМ-нің буындары түсінігі есептеуіш машиналарының даму тарихымен тығыз байланысты, яғни қолданылатын элементтік базасы бойынша анықталады. ЭЕМ-нің бірінші буынында элементтік база ретінде электрондық лампа мен реле қолданылды. 1948 жылы транзисторлар мен магниттік жүрекшелерге сақтау құрылғыларының ойлап табылуы есептеуіш техникасына үлкен әсерін тигізді. Катодты қыздыру үшін үлкен қуатты қажет ететін және сенімсіздеу болып келетін вакуумдық лампалар кішкене кремнилік транзистормен алмастырылды. Олар екінші буын машиналарының элементтік базасы ретінде қолданылды. Компьютерлердің миниатюрасын және сенімділігін көтерудің революциялық кезеңі 1958 жылы болды. Американдық инженер Д.Килби бірінші интегралдық схеманы ойлап тапты. 60-шы жылдардың ортасынан бастап элементтік базасы интеграциясы кіші және орта дәрежедегі интегралдық схемалар болатын үшінші буын машиналары шыға бастады. Тағы бір технологиялық революция микропроцессорларды жасауға алып келді. 1971 жылы американдық инженер М.Хофф бір кремнилік кристаллда –микропроцессорда – компьютердің негізгі элементтерін біріктірді. ЭЕМ-нің төртінші буынында интеграция дәрежесі жоғарғы интегралдық схемалар – үлкен интегралдық схемалар (ҮИС) құрыла бастады. Үлкен интегралдық схеманың кристалында он мыңға дейін элементтер қамтылады. Қазіргі кездегі кең қолдау тапқан дербес компьютерлер төртінші буынға жатады. Қазіргі уақытта ЭЕМ-нің бесінші буынын дайындау мәселесі қаралуда. Оның ерекшелігі дыбысты енгізіп және шығаруға қатысты өз бетінше оқып үйрену қабілеті болмақ.

             Компьютер (ағылшын computer —«есептегіш»), ЭЕМ (электрондық есептеуіш машина) — есептеулерді жүргізуге, және ақпаратты алдын ала белгіленген алгоритм бойынша қабылдау, қайта өңдеу, сақтау және нәтиже шығару үшін арналған машина. Компьютер дәуірінің бастапқы кезеңдерінде компьютердің негізгі қызметі — есептеу деп саналатын. Қазіргі кезде олардың негізгі қызметі — басқару болып табылады.

              Негізгі принциптері: Өзінің алдына  қойылған тапсырманы орындау  үшін компьютер механикалық бөліктердің  орын ауыстырылуын, электрондардың, фотондардың, кванттық бөлшектердің  ағынын немесе басқа да жақсы  зерттелген физикалық құбылыс  әсерлерін қолданады. Көбімізге  компьютерлердің ең көп таралған  түрі — дербес компьютер жақсы таныс.

Компьютер архитектурасы алға қойылған мәселені, зерттеліп отырған физикалық  құбылысты максималды айқын көрсетіп, модельдеуге мүмкіндік береді. Мысалы, электрондық ағындар бөгеттер салу кезіндегі су ағынының үлгісі ретінде  қолданылуы мүмкін. Осылай құрастырылған  аналогтық компьютерлер ХХ ғасырдың 60-жылдары көп болғанымен, қазір  сирек кездеседі.

Қазіргі заманғы компьютерлердің  басым бөлігінде алға қойылған мәселе әуелі математикалық терминдерде  сипатталады, бұл кезде барлық қажетті  ақпарат екілік жүйеде (бір және ноль ретінде) көрсетіледі, содан кейін  оны өңдеу үшін қарапайым логика алгебрасы қолданылады. Іс жүзінде  барлық математикалық есептерді  бульдік операциялар жиынына  айналдыруға болатындықтан, жылдам жұмыс жасайтын электронды компьютерді  математикалық есептердің, сонымен  қатар, ақпаратты басқару есептерінің  көпшілігін шешу үшін қолдануға болады.Бірақ, компьютерлер кез-келген математикалық  есепті шеше алмайды. Компьютер шеше алмайтын есептерді ағылшын математигі Алан Тьюринг сипаттаған болатын.  Орындалған есеп нәтижесі пайдаланушыға әр түрлі енгізу-шығару құрылғыларының көмегімен көрсетіледі, мысалы, лампалық индикаторлар, мониторлар, принтерлер және т.б.

               Компьютер — жай ғана машина, ол өзі көрсетіп тұрған сөздерді «түсінбейді» және өз бетінше «ойламайды». Компьютер тек қана бағдарламада көрсетілген сызықтар мен түстерді енгізу-шығару құрылғыларының көмегімен механикалық түрде көрсетеді. Адам миы экрандағы көріністі қабылдап, оған белгілі бір мән береді.

             Компьютер атауы (имя компьютера; computer name) — есептеу желісінде  компьютерді (есептеу машинасын)  шатастырмай табуға мүмкіндік  бе-ретін, үзындығы 15 латын символынан  аспайтын бірегей (өте сирек  кездесетін) атау. Ол басқа есептеу  машинасының немесе есептеу машиналары  бірлестігінің атауларымен дөл  келмеуі керек және оның құрамында  бос орын болмауы тиісті.

             Компьютер сөзі ағылшын тілінің ағылш. to compute, ағылш. computer сөздерінен шыққан. Бұл сөздер «есептеу», «есептегіш» мағынасында аударылады (ағылшын сөзі, өз кезегінде, латын тілінің лат. computo — «есептеймін» сөзінен шыққан). Алғашында ағылшын тілінде бұл сөз механикалық құрылғыларды қолданбай немесе қолдана отырып, арифметикалық есептеулер жүргізетін адамға қатысты айтылған. Содан кейін бұл сөз машиналарға қатысты айтылатын болды, бірақ, қазіргі заманғы компьютерлер математикамен тікелей байланысты емес мәселелермен де айналысады.

             Компьютер сөзінің анықтамасы алғаш рет 1897 жылы ағылшындық Оксфорд сөздігінде пайда болған болатын. Бұл сөздікте компьютер механикалық есептеуіш құрылғы ретінде көрсетілген. 1946 жылы бұл сөздікте цирлық компьютер, аналогтық есептеуіш машинасы және электронды компьютер түсініктерінің мағынасы ажыратылып көрсетілдді.

               Шыққан компьютерлер буынға бөлінеді. Қазір компьютерлердің алты буыны  белгілі деп айтуға болады. Жалпы,  компьютерді буынға бөлу шарты,  ол негізінен компьютер-лердің  элеменнтер базасының өзгеруіне,  өзінің құрамына кіретін құрылғылардың  түрлері мен қасиеттерінің өзгеруі-не  және компьютерлер арқылы шығарылатын  есептердің жаңа (сандық емес) топтарының  пайда болуына тәуелді.

Компьютердің бірінші буыны  – 1959 жылға шейін шыға-рылған электронды дампалық машиналар, жылдамдықта-ры ондаған  мың а/с., разрядтылығы 31 – 34 бит, жедел  жа-дыларының көлемі 1 – 4 кб, амалдардың жұмыс ырғағы қатал тізбекті, яғни, келесі орындалатын амал ағымдағы амалдың  орындалуы толық біткеннен соң  ғана басталады, енгізу/шығару амалдары орындалып тұрғанда орталық процессор  тоқтап тұрады. Программа негізінен машиналық тілде қолмен жазылып орындалады. Жұмыс істеу режімі ашық болды, яғни, әрбір программалаушы басқару тетігінде өзі отырып программасын енгізіп жұмыс істетті. Негізінен сандық шамалармен байланысты есептер шыға-рылады, символдық шамаларды пайдалану жоқ болды. Стандартты программалар жасала бастады.

Компьютердің екінші буыны – 1968 жылға шейін шыға-рылған транзисторлық  компьютерлер, жылдамдықтары жүздеген мың а/с., разрядтылығы 31 – 48 бит, жедел  жа-дыларының көлемі - 8 – 128 кб. Процессордың жұмысын үзу және оны өңдеу  жүйесі пайда болды (ол негізінен  енгізу/шығару амалдарын орындау  кезінде іске қосыла-ды). Алгоритмдік  тілдерден машиналық тілге автоматты аударатын программалар – трансляторлар шықты, яғни, программа құру үшін деңгейлері жоғары программалау тілдері (Fortran. Algol. Cobol және басқалар) қолданылды, стандартты программалардың қоры үлкейді. Жабық жұ-мыс істеу режімі қолданылды, яғни, программалаушы ті-келей машинамен жұмыс істемейтін болды, ол өзінің жо-ғары деңгейдегі программалау тілінде жазылған програм-масын ары қарай машинадан өткізетін қызмет көрсететін топқа тапсырды. Программалардың жұмыс істеуін бақы-лау және басқару үшін алғашқы мониторлық жүйелер пайда болды. Олардың өзінің тапсырмаларды басқару тіл-дері болған. Индексті арифметиканың шығуы, тікелей емес адрестеуді және динамикалық жадыны қолдану, сим-волдық шамалармен жұмыс істеу мүмкіншілігінің пайда болуы осы буынның құрылымдық ерекшклігін айқында-ды.

Компьютердің үшінші буыны – 1970 жылдан бастап интегралды микросхемалар арқылы жасалынған компьютерлер мен компьютерлер кешені, жылдамдықтары миллион-даған а/с., разрядтылығы 32 – 64 бит, жедел жадыларының көлемі 64 – 1024 кб. Дамыған үзу жүйесі бар, енгізу/шыға-ру амалдарының орындалуы орталық процессордың жұ-мысымен параллель жүргізетін қосымша процессорлар (арналар) қолданылады. Бұрын программалар атқаратын көп жұмыстар, соның ішінде үзуді ұйымдастырумен өңде-тулер аппарат арқылы жүзеге асатын болды. Компьютер-лердің сыртқы ортаны қабылдай және оған әсер ете ала-тын сенсорлық қондырымдары пайда бола бастады. Осы-лар компьютерді алдын ала енгізілген деректерді детер-минді (бірмәнді) өңдейтін құрылғыдан сыртқы ортада туа-тын жағдайға қарай жұмыс істей алатын зерделі құрылғы-ларға айналдырылды. Жедел жадыны қорғау және дина-микалық бөлу іске асты. Көптеген жоғары деңгейлі, со-лардың ішінде символдық есептерге (SNOBOL. LISP. REFAL сияқтылар) және логикалық есептерге (Prolog. Miranda сияқтылар) бағытталған программалау тілдері қолданылды, символдық есептер мен логикалық есептер үлесі көбейді. Программалардың жұмысын бастан аяқ басқаратын (сыртқы және ішкі ортадағы жағдайларға мақ-сатты жауап бере алатын) дамыған операциялық жүйелер жұмыс істеді. Осы буынның негізгі ерекшелік программа-лары төменнен жоғары қарай ұйқас болатындай мүмкін-шіліктеріөспелі компьютерлердің бірнеше модельднрінен тұратын машиналар кешенінің пайда болуы (мысалы, со-циялистік елдерде ЕС ЭВМ 1020 – 1050, ал АҚШ – та IBM 360 – 370 сияқты компьютерлердің бірыңғай жүйелері). Бұл компьютерлер арқылы жедел жадыны немесе сыртқы құрылғылардың өрісін ортақ етуге болатын есептеу жүйе-лерін жасауға мүмкіншілік туды. Бір уақытты бірнеше программа істей алатындай етіп орталық процессордың уақытын бөлшектейтін мультипрограмдық режім іске асырылды. Сонымен қатар, нақты уақыт масштабында жұ-мыс істей алатын программалар пайда бола бастады. Олар технологиялық процесстерді, ұшатын аппараттардың жә-не басқа күрделі құрылғылардың жұмыстарын басқаруға мүмкіндік берді.

Компьютердің төртінші буыны – 1975 жылдан бастап үлкен немесе өте  үлкен интегралды микросхемалар  арқы-лы жасалынған көппроцессорлы суперкомпьютерлер  мен микрокомпьютерлер (кейін оларды дербес компьютерлер деп атап кетті). Суперкомпьютерлердің жылдамдықтары жүз миллионға шейін (мысалы, Cray – 1 суперкомпьютері-нің жылдамдығы 100 млн а/с). Жалпы осы буындағы ком-пьютерлер арқылы байланыс әдістері одан әрі дамып теле-фон, телеграф желілеріне қосылып компьютерлік глобаль-ді(мысалы Интернет), корпоративтік және локальді желі-лер құрылды, өте үлкен деректер архиві жиналды, дерек-тердің визуалды (бейнелік) түрдегі берілуі және өңделуі дамыды, нақты уақыт масштабында жұмыс істей алатын жүйелер кеңінен жүзеге асты.

Компьютердің бесінші буыны  – 1980 жылы Жапония жариялаған 5 жылдық жобадан басталады, онда компьютер-лік тілдің машиналық тілі ретінде логикалық программа-лау тілі PROLOG – ты аппаратты түрде жүзеге асырып, жасанды зерде (интеллект) жүйесін құру көзделді. Бұл жоба нәтижелі аяқталды, қазір өзінің жасанды зердесі бар, яғни, белгілі есептің берілгені бойынша оның шешуін та-батын тұжырымдарды жасап және оны дәлелдей алатын, белгілі тақырыпқа өлең немесе музыка шығара алатын жә-не т.с.с интеллектуалды жұмыстарды өздігінен жасай ала-тын компьютерлер бар. Бірақ олар кең тарамаған, себебі олардың бағасы өте қымбат және олармен жұмыс істеу аса біліктілікті талап етеді.

Компьютердің алтыншы буыны - өткен  ғасырдың 90 – шы жылдарының ортасынан  бастап қолға алына бастады. Ол жасанды нейрон желісіне, көпмәнді логика және кванттық есептеу теориясына негізделіп жасалынады. Бұл компьютерлердің дамыған жасанды зердесі болады: олардың өзін - өзі оқытатын қабілеті және өздігінен кейбір мәселені түсініп (образды танып), жобалап, оны шешу не-месе жүзеге асыру үшін керекті программаны немесе құрылғыны құрастыра алатын мүмкіншілігі болады.

         

  Жүйелік блок - дербес компьютердің ең негізгі құрылғысы. Жүйелік блоктың ішінде жүйелік тақша(аналық плата), процессор, оперативті жад, қатқыл диск, қоректендіру блогы, видеокарта секілді көптеген маңызды құрылғылар орналасады. Жүйелік блоктың алдыңғы панелінде қосу (Power) және қайта жүктеу (Reset) батырмасы, компакт-диск мен дискетаны оқитын дискжетектер және қызыл-жасыл жарық индикаторлары орналасады. Жүйелік блоктың артқы жағында негізгі (монитор, пернетақта, тышқан) және қосымша құрылғыларды (принтер, модем, сканер, микрофон) қосатын порттар мен кірістік құрылғылар орналасқан. 
              Дисплей (монитор) – компьютердің экранына ақпаратты шығаратын құрылғы. Сыртқы пішіні бойынша дисплей кәдімгі түрлі түсті теледидарға ұқсайды, сондықтан оны жиі телевизиялық техникадағыдай монитор деп те атайды.

             Пернетақта – компьютердің жұмысын басқара отырып, қажетті ақпаратты енгізу үшін қолданылатын құрылғы. Ол әріптің және цифр пернелерінің көмегімен компьютерге кез келген ақпаратты енгізуге мүмкіндік береді. Қазіргі компьютерлердің пернетақтасында 101 немесе 105 перне, ал оң жақ жоғарғы бұрышында жұмыс режимі туралы ақпарат беріп отыратын 3 жарық индикаторы орналасады.

             Тышқан, кейде тінтуір – «графикалық» басқару құрылғысы. Тышқанды кілемшенің үстімен жылжытқанда, экрандағы тышқанның нұсқағышы да сонымен қатар қозғалып, қажетті объектілерді таңдауға мүмкіндік береді. Тышқанның екі (немесе үш) батырмасының бірін баса отырып объектілермен көптеген операцияларды орындауға болады. Батырмалардың ортасында орналасқан доңғалақшаны айналдырып, экранға тұтасымен сыймай тұрған мәтінді, суретті немесе web-парақты жоғары-төмен жылжытуға болады.

Информация о работе ЭЕМ- нің архитектурасының негізгі түсініктері