Автор работы: Пользователь скрыл имя, 21 Декабря 2013 в 22:44, реферат
Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ей занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры. При исследовании проблем, связанных с искусственным интеллектом, решаются многие основополагающие вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехники на жизнь будущих поколений людей. Здесь возникают и развиваются новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно назвать философским осмыслением этих результатов.
ВВЕДЕНИЕ
Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ей занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры. При исследовании проблем, связанных с искусственным интеллектом, решаются многие основополагающие вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехники на жизнь будущих поколений людей. Здесь возникают и развиваются новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно назвать философским осмыслением этих результатов.
По современным научным
данным человеческий мозг содержит огромное
число "вычислительных" узлов
– нейронов. Новейшие вычислительные
системы стремительно приближаются
по своим вычислительным возможностям
к мозгу, хотя ещё и далеки от совершенства.
Искусственные нейронные сети контролируют
сложнейшие системы управления и
слежения, проявляют способности
в области распознавания
Понятие искусственного интеллекта многогранно. Но несколько наиболее важных аспектов все же можно выделить. Во-первых, это вопрос о том, что такое искусственный интеллект, ведь определение понятия обусловливает предмет, цель, методы, успешность исследования. Во-вторых, интеллект подразумевает обработку информации, поэтому важной является проблема представления знаний в системах искусственного интеллекта. В-третьих, существовали и существуют различные подходы к решению вопросов, связанных с созданием интеллектуальных систем, и их рассмотрение проливает свет на многие аспекты проблемы. В-четвертых, огромное значение имеет обеспечение взаимодействия систем искусственного интеллекта с человеком на естественном языке, так как при этом значительно облегчается ведение диалога с ними.
Несмотря на то, что, по мнению некоторых ученых, искусственный интеллект принципиально невозможен, разработки в области создания систем искусственного интеллекта являются в настоящее время одним из приоритетных направлений в науке.
1. ИСТОРИЯ РАЗВИТИЯ ИИ
Как и любая основополагающая
наука "Искусственный интеллект"
имеет достаточно богатую историю.
Можно выделить как теоретическую,
так и экспериментальную части.
Суть науки "Искусственный интеллект"
лучше всего отражают слова "Дух
в машине", при этом не столь
важно развитие отдельно понятий
о машине и духе, как важно их
сочетание. Но в то же время понятно,
что чем более развиты
Исторически сложились три основных направления в моделировании ИИ.
В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.
Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.
Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.
Самыми первыми
Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяет ей играть в шашки, причем в ходе игры машина обучается или, по крайней мере, создает впечатление, что обучается, улучшая свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.
Каким образом машине удалось достичь столь высокого класса игры?
Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет лучше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть и другие критерии, которые относятся к отдельным ее стадиям — дебюту, миттэндшпилю, эндшпилю.
Разумно сочетая такие критерии (например в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой показатель эффективности — оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа проведенных ходов и игр с учетом их исхода.
По мнению А. Самуэля, машина, использующая этот вид обучения, может научиться играть лучше, чем средний игрок, за относительно короткий период времени.
Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является "жесткой", заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс "мышления" у машины существенно отличен оттого, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.
Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой "Каисса".
Почему здесь употреблено "до недавнего времени"? Дело в том, что недавние события показали, что несмотря на довольно большую сложность шахмат, и невозможность, в связи с этим произвести полный перебор ходов, возможность перебора их на большую глубину, чем обычно, очень увеличивает шансы на победу. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100'000'000 ходов в секунду. До недавнего времени редкостью был компьютер, могущий делать такое количество целочисленных операций в секунду, а здесь мы говорим о ходах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов.
В настоящее время существуют и успешно применяются программы, позволяющие машинам играть в деловые или военные игры, имеющие большое прикладное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук — физиологи, психологи, математики, инженеры. Такой интерес к задаче стимулировался фантастическими перспективами широкого практического использования результатов теоретических исследований: читающие автоматы, системы ИИ, ставящие медицинские диагнозы, п роводящие криминалистическую экспертизу и т. п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.
В 1957 г. американский физиолог Ф. Розенблатт предложил модель зрительного восприятия и распознавания — перцептрон. Появление машины, способной обучаться понятиям и распознавать предъявляемые объекты, оказалось чрезвычайно интересным н е только физиологам, но и представителям других областей знания и породило большой поток теоретических и экспериментальных исследований.
Перцептрон или любая программа, имитирующая процесс распознавания, работают в двух режимах: в режиме обучения и в режиме распознавания. В режиме обучения некто (человек, машина, робот или природа), играющий роль учителя, предъявляет машине объекты и о каждом их них сообщает, к какому понятию (классу) он принадлежит. По этим данным строится решающее правило, являющееся, по существу, формальным описанием понятий. В режиме распознавания машине предъявляются новые объекты (вообще говоря, отличные от ранее предъявленных), и она должна их классифицировать, по возможности, правильно.
Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей — проблемой перевода с одного языка на другой, а также обучения машины языку. При достаточно формальной обработке и классификации основных грамматических правил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке.
Что же касается моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. Начиная с 1960 г., был разработан ряд программ, способных находить доказательства теорем в исчислении предикатов первого порядка. Эти программы обладают, по словам американского специалиста в области ИИ Дж. Маккатти, "здравым смыслом", т. е. способностью делать дедуктивные заключения.
В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет "интеллектуальная" программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая бы, что называется "позарез" была бы нужна математикам и была бы принципиально новой.