Информационные технологии экспертных систем

Автор работы: Пользователь скрыл имя, 16 Марта 2014 в 21:06, контрольная работа

Краткое описание

Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.
Под искусственным интеллектом понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Обычно имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению.

Содержание

1 Информационные технологии экспертных систем 3
2 Экспертные системы 5
3 Основные компоненты экспертных систем 7
4 Классификация видов информационных технологий 11
Список литературы 13
¬

Прикрепленные файлы: 1 файл

ИТ контрольная работа.docx

— 31.66 Кб (Скачать документ)

СОДЕРЖАНИЕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           1   Информационные технологии экспертных систем

Экспертные системы основаны на использовании искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, о которых этими системами накоплены знания.

Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.

Под искусственным интеллектом понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Обычно имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению.

Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникнет необходимость. ЭС представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области знаний в форму эвристических правил. Технология ЭС принимается в качестве советующих систем.

  1. Сходство ИТ, используемых в экспертных системах и системах поддержки принятия решений, состоит в том, что обе они обеспечивают высокий уровень поддержки принятия решений. Однако имеются три существенных различия: связано с тем, что решение проблемы в рамках систем поддержки принятия решений отражает уровень ее понимания пользователем и его возможности получить и осмыслить решение Технология экспертных систем, наоборот, предлагает пользователю принять решение, превосходящее его возможности;
  2. выражается в способности экспертных систем пояснять свои рассуждения в процессе получения решения. Часто эти пояснения оказываются более важными для пользователя, чем само решение;
  3. связано с использованием нового компонента информационной технологии знаний.

Достоинство применения ЭС заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений из базы знаний.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Основные компоненты экспертных систем

Основными компонентами ИТ, используемой в ЭС, являются: интерфейс пользователя, база знаний, интерпретатор, модуль создания системы.

Интерфейс пользователя. Менеджер (специалист) использует интерфейс для ввода информации и команд в экспертную систему и получения выходной информации из нее. Команды включают в себя параметры, направляющие процесс обработки знаний. Информация обычно выдается в форме значений, присваиваемых определенным переменным.

Руководитель может использовать четыре метода ввода информации: меню, команды, естественный язык и собственный интерфейс,

          Технология  экспертных систем предусматривает  возможность получать в качестве  выходной информации не только решение, но и необходимые объяснения. Различают два вида объяснений : объяснения, выдаваемые, по запросам. Пользователь в любой момент может потребовать от экспертной системы объяснения своих действий; объяснения полученного решения проблемы. После получения решения пользователь может потребовать объяснений того, как оно было получено. Система должна пояснить каждый шаг своих рассуждений, ведущих к решению задачи.

База знаний. Она содержит факты, описывающие проблемную область, а также логическую взаимосвязь этих фактов. Центральное место в базе знаний принадлежит правилам. Правило определяет, что следует делать в данной конкретной ситуации, и состоит из двух частей: условия, которое может выполняться или нет, и действия, которое следует произвести, если условие выполняется. Все используемые в экспертной системе правила образуют систему правил, которая даже для сравнительно простой системы может содержать несколько тысяч правил.

Все виды знаний могут быть представлены с помощью одной либо нескольких семантических моделей. К наиболее распространенным моделям относятся логические, продукционные, фреймовые и семантические сети

Интерпретатор. Это часть ЭС, производящая в определенном порядке обработку знаний (мышление), находящихся в базе знаний. Технология работы интерпретатора сводится к последовательному рассмотрению совокупности правил (правило за правилом). Если условие, содержащееся в правиле, соблюдается, выполняется определенное действие, и пользователю предоставляется вариант решения его проблемы.

Во многих экспертных системах вводятся дополнительные блоки: база данных, блок расчета, блок ввода и корректировки данных. Блок расчета необходим в ситуациях, связанных с принятием управленческих решений. При этом важную роль играет база данных, где содержатся плановые, физические, расчетные, отчетные и другие постоянные или оперативные показатели. Блок ввода и корректировки данных используется для оперативного и своевременного отражения текущих изменений в базе данных.

Модуль создания системы. Он служит для создания набора (иерархии) правил. Существуют два подхода, которые могут быть положены в основу модуля создания системы: использование алгоритмических языков программирования и использование оболочек экспертных систем.

Для представления базы знаний специально разработаны языки Лисп и Пролог, хотя можно использовать и любой известный алгоритмический язык.

Оболочка экспертных систем представляет собой готовую программную среду, которая может быть приспособлена к решению определенной проблемы путем создания соответствующей базы знаний. В большинстве случаев использование оболочек позволяет создавать экспертные системы быстрее и легче в сравнении с программированием.

 

 

 

 

 

 

3 Модели знаний

Знания это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. Для хранения знаний используются базы знаний. Знания могут быть классифицированы по следующим категориям:

поверхностные знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;

глубинные абстракции, аналогии, схемы, отражающие структуру и процессы в предметной области.

Существуют десятки моделей представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

  • продукционные;
  • семантические сети;
  • фреймы;
  • формальные логические модели.

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).

Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения к данным). Данные это исходные факты, на основании которых запускается машина вывода программа, перебирающая правила из базы.

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Семантическая сеть это ориентированный граф, вершины которого понятия, а дуги отношения между ними.

Понятиями обычно выступают абстрактные или конкретные объекты, а отношения это связи типа: «это» («is»), «имеет частью» («has part»), «принадлежит», «любит». Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

  • класс элемент класса;
  • свойство значение;
  • пример элемента класса.

Выделяют несколько классификаций семантических сетей:

по количеству типов отношений (однородные с единственным типом отношений; неоднородные с различными типами отношений);

по типам отношений (бинарные в которых отношения связывают два объекта; n-парные отношения, связывающие более двух понятий).

Наиболее часто в семантических сетях используются следующие отношения:

  • связи типа «часть-целое»;
  • функциональные связи;
  • количественные;
  • пространственные;
  • временные;
  • атрибутные связи;
  • логические связи.

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу.

Основное преимущество этой модели в соответствии современным представлениям об организации долговременной памяти человека. Недостаток модели сложность поиска вывода на семантической сети.

Под фреймом понимается абстрактный образ или ситуация. В психологии и философии известно понятие абстрактного образа. Например, слово «комната» вызывает у слушающих образ комнаты: «жилое помещение» с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6–20 м2. Из этого описания ничего нельзя убрать (например, убрав окна, мы получим уже чулан, а не комнату), но в нем есть «дырки», или «слоты», это незаполненные значения некоторых атрибутов количество окон, цвет стен, высота потолка, покрытие пола и др.

В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа.

Структуру фрейма можно представить так:

  • ИМЯ ФРЕЙМА:
  • (имя 1-го слота: значение 1-го слота),
  • (имя 2-го слота: значение 2-го слота),
  • (имя N-ro слота: значение N-ro слота).

Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных.

Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:

  • фреймы-структуры, для обозначения объектов и понятий (заем, залог, вексель);
  • фреймы-роли (менеджер, кассир, клиент);
  • фреймы-сценарии (банкротство, собрание акционеров, празднование именин);
  • фреймы-ситуации (тревога, авария, рабочий режим устройства) . Важнейшим (главным) свойством теории фреймов является заимствованное из теории семантических сетей наследование свойств.

Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека, а также ее гибкость и наглядность.

В представлении знаний выделяют формальные логические модели, основанные на классическом исчислении предикатов I порядка, когда предметная область или задача описывается в виде набора аксиом. Эта логическая модель применима в основном в исследовательских «игрушечных» системах, так как предъявляет очень высокие требования и ограничения к предметной области. В промышленных же экспертных системах используются различные ее модификации и расширения.

Модели знаний продукционная, фреймовая, семантических сетей обладают практически равными возможностями представления знаний. Дополнительно каждая модель знаний обладает следующими свойствами:

  1. продукционная модель позволяет легко расширять и усложнять множество правил вывода;
  2. фреймовая модель позволяет усилить вычислительные аспекты обработки знаний за счет расширения множества присоединенных процедур;
  3. модель семантических сетей позволяет расширять список отношений между вершинами и дугами сети, приближая выразительные возможности сети к уровню естественного языка.

 

 

 

 

 

          4 Типы экспертных систем

Можно назвать несколько типов современных экспертных систем.

  1. Экспертные системы первого поколения. Предназначены для решения хорошо структурированных задач, требующих небольшого объема эмпирических знаний. Сюда относятся классификационные задачи и задачи выбора из имеющегося набора вариантов.
  2. Оболочки ЭС. Имеют механизм ввода-вывода, но Б3 пустая. Требуется настройка на конкретную предметную область. Знания приобретаются в процессе функционирования ЭС, способной к самообучению.
  3. Гибридные ЭС. Предназначены для решения различных задач с использованием Б3. Это задачи с использованием методов системного анализа,  исследования операций, математической статистики,  обработки информации. Пользователь имеет доступ к объективизированным знаниям, содержащимся в Б3 и пакетах прикладных программ.
  4. Сетевые ЭС. Между собой связаны несколько экспертных систем. Результаты решения одной из них являются исходными данными для другой системы. Эффективны при распределенной обработке информации.

Информация о работе Информационные технологии экспертных систем