Информационные сети и системы

Автор работы: Пользователь скрыл имя, 26 Июля 2014 в 10:09, реферат

Краткое описание

Сегодня, в век информатизации и компьютеризации информация является таким же ресурсом, как трудовые, материальные и энергетические, а значит, процесс ее переработки можно воспринимать как технологию.
Информационные технологии – это процессы, использующие совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии объекта, процесса или явления (нового информационного продукта).
Информационная система (база) – это организационно-упорядоченная взаимосвязанная совокупность средств и методов информационных технологий, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели

Прикрепленные файлы: 1 файл

Информационные сети и системы.doc

— 6.05 Мб (Скачать документ)

 

1.6.5. Беспроводные глобальные сети WWAN (технологии IEEE 802.20, GSM, CDMA, 3G)

 

Стандарт IEEE 802.20

 

Разработка стандарта IEEE 802.20 для мобильного доступа к данным еще не завершена. В отличие от WiMax, рассчитанного на работу в городах при ограниченном числе базовых станций, 802.20 имеет больше сходства с обычными сотовыми системами и предназначен для быстродействующих мобильных подключений на скоростях свыше 1 Мбит/с. в 3-ГГц частотном диапазоне. Данный стандарт занимает интересное положение среди остальных стандартов – с одной стороны, его называют ближайшим конкурентом WiMAX (802.16e), с другой стороны, он может использоваться в системах сотовой связи, заменяя GPRS или CDMA2000, а это уже WWAN. Возможно, в связи с этим, его можно выделить в отдельный класс беспроводных сетей связи MBWA (Mobile Broadband Wireless Access).

Главный сторонник спецификации 802.20 фирма Flarion Technologies уже испытывала свою технологию FLASH-OFDM (Fast Low-Latency Access with Seamless Handoff Orthogonal Frequency Division Multiplexing) вместе с компанией Nextel Communications. Однако рассмотрение стандарта находится еще на довольно ранней стадии и нет никакой гарантии, что технология Flarion в конечном счете ляжет в основу 802.20. Продвижению 802.16e, равно как и 802.20, также может помешать инерция операторов. Для поддержки массовых подключений владельцев мобильной аппаратуры потребуются значительные вложения в инфраструктуру, и операторы могут решить, что трудоемкое развертывание новых технологий приведет лишь к дублированию уже предоставляемых услуг. Соотношение перспективных беспроводных технологий показано на рис 1.17.

Рис. 1.17. Соотношение перспективных беспроводных технологий

 

Глобальная система мобильной связи (GSM)

 

Стандарт GSM является безусловным лидером по распространенности на мировом рынке. В 1982 году Европейская конференция администраций почты и телеграфа (СЕРТ) создала рабочую группу GSM (Group Special Mobile) для разработки общеевропейской системы подвижной сотовой связи. В 1989 году работы по GSM перешли под эгиду Европейского института стандартизации электросвязи (ETSI), и в 1990 году были опубликованы спецификации первой фазы стандарта. К 1993 году в 22 странах мира уже действовало 36 сетей GSM, а к 1995 году насчитывалось же около 5 млн абонентов – стандарт стал общемировым и расшифровывался уже как Global System for Mobile Communications.

Стандарт GSM обеспечивает работу абонентов в диапазонах 900 и 1800 МГц (в США – 1900 МГц). В Европе и России в диапазоне 900 МГц мобильный телефон передает (восходящий канал) в полосе 890-915 МГц, принимает (нисходящий канал) в интервале 935-960 МГц (для GSM-1800 – 1710-1785 и 1805-1880 МГц соответственно). Весь диапазон делится на частотные каналы по 200 кГц – в GSM-900 всего 124 канала (124 восходящих и 124 нисходящих), разнос между восходящим и нисходящим каналом – 45/95 МГц (в диапазонах 900/1800 МГц, соответственно). Базовая станция поддерживает от 1 до 16 частотных каналов. Таким образом, в GSM реализован частотный метод дуплексирования каналов (FDD).

Для доступа к среде передачи  в GSM использован принцип временного разделения канала – ТDМА. Частотные каналы разбиты на кадры по 8 временных интервалов (канальные интервалы) длительностью по 577 мкс. Каждому физическому каналу соответствует один определенный временной интервал на определенной частоте. Таким образом, мобильный терминал (МТ) передает базовой станции (БС) информацию в течение 577 мкс каждые 4615 мкс. БС связывается с МТ точно так же, но на три временных интервала раньше МТ (и на частоте на 45 МГц выше), чтобы разнести во времени прием и передачу. Это существенно упрощает аппаратуру МТ.

Временные интервалы в GSM бывают пяти типов – нормальный, подстройки частоты, синхронизации, установочный и доступа. Полезная информация передается двумя блоками по 57 бит. Между ними расположена тренировочная последовательность в 26 бит, ограниченная одноразрядными указателями РВ (Pointer Bit). Интервалы ВВ (Border Bit) длиной 3 бита ограничивают всю передаваемую последовательность. После трансляции всех 148 бит канального интервала передатчик «молчит» в течение защитного интервала ST (Shield Time) длительностью 30,44 мкс, что по времени эквивалентно передаче 8,25 бит.

Каждые 26 кадров объединены в мультикадр продолжительностью 120 мс. В мультикадре каждый 13-й кадр зарезервирован для канала управления, а в течение каждого 26-го кадра вся система «молчит».

В GSM использован принцип медленных частотных скачков – прием/передача нового кадра может происходить на новой несущей частоте. При этом сохраняется дуплексный разнос в 45 МГц. Начальное значение несущей и последовательность изменения назначаются мобильному терминалу при установлении связи. Модуляция сигнала – двоичная гауссова с минимальным частотным сдвигом GMSK (один бит на символ).

Радиус соты в GSM – до 35 км – ограничен возрастающей временной задержкой распространения сигнала, к которой чувствительна технология TDMA. Сетевая инфраструктура GSM/MAP основана на системе сигнализации ОКС7 (SS7). Для кодирования речи применен кодек VCELP на основе алгоритма RPE-LTP (Regular Pulse Excitation-Long Term Prediction) со скоростью 13 кбит/с. Скорость передачи данных – до 9,6 кбит/с (по стандартной схеме).

 

Стандарт CDMA

 

CDMA расшифровывается как  множественный доступ с кодовым разделением каналов (Code-Division Multiple Access). Метод множественного доступа с кодовым разделением каналов известен давно, однако,  из-за сложности аппаратуры для обработки сигналов до определенного момента CDMA находил применение только в военной и специальной технике благодаря таким своим свойствам, как высокая стойкость к помехам и скрытность передачи. С развитием микроэлектроники в последнее десятилетие стало возможным создание недорогих портативных станций CDMA. Лидер в этой области – американская компания Qualcomm, разработавшая спецификацию IS-95 (CDMA-One). Сейчас именно на базе этого стандарта развивается одно из направлений сотовой телефонии третьего поколения.

В CDMA различают три вида кодового разделения каналов – расширение спектра методом прямой последовательности (CDMA-DS), частотных скачков (CDMA-FH) и временных скачков (CDMA-ТН). В современных системах CDMA развитие получил метод доступа CDMA-DS (в отечественной литературе он известен как передача на основе шумоподобных сигналов (ШПС)). В CDMA-DS каждый бит информационного сигнала заменяется некоторой фиксированной последовательностью определенной длины – базой сигнала. Ноль и единица могут, например, кодироваться инверсными последовательностями. Для каждого канала задается определенная последовательность (код). Спектр сигнала расширяется пропорционально длине базы. Последовательности обычно подбирают ортогональными (скалярное произведение равно нулю). В приемнике происходит вычисление корреляционных интегралов входного сигнала и кодовой последовательности определенного канала. В результате принимается только тот сигнал, который был расширен посредством заданной кодовой последовательности (корреляционная функция выше порогового значения). Все остальные сигналы воспринимаются как шум. Таким образом, в одной полосе могут работать несколько приемопередатчиков, не мешая друг другу. Благодаря широкополосности сигнала снижается его мощность, причем при очень длинной базе – ниже уровня белого шума. При этом сильно возрастает помехоустойчивость, а с ней и качество связи – узкополосная помеха не повлияет на широкополосный сигнал. Кодовая последовательность автоматически является и элементом криптозащиты. Что особенно привлекательно для операторов сотовой связи – упрощается проблема частотного планирования, поскольку все станции работают в одной полосе. Все эти свойства и предопределили успех CDMA.

Сети IS-95 занимают практически тот же частотный диапазон, что и сети AMPS: 824-840 и 869-894 МГц. Нисходящий канал (от БС к МТ) всегда на 45 МГц выше восходящего. Ширина канала – 1,25 МГц. Существует и более высокочастотная версия в диапазонах 1890-1930 и 1950-1990 МГц. Там дуплексный разнос – 80 МГц. При работе в диапазоне до 900 МГц скорость передачи данных равна 1,2-9,6 Кбит/с, а в более высокочастотной версии – скорость передачи данных 14,4 кбит/с.

Важная особенность стандарта IS-95 – гибкое управление мощностью излучения МТ. В пределах соты уровни принимаемых БС сигналов должны быть одинаковыми независимо от удаления МТ. Для этого мощность МТ регулируется по специальному алгоритму в диапазоне порядка 80 дБ с шагом 1 дБ каждые 1,25 мс. Кроме того, в IS-95 скорость работы голосового кодека не постоянна, как в GSM, а может меняться в зависимости от интенсивности речи от 8 до 1,2 кбит/с. Эти особенности позволяют очень гибко регулировать загрузку в сети, не загружая соту избыточной информацией.

Одна БС может поддерживать до 64 каналов. Однако часть из них – служебные: пилотный, синхронизации, вызова. Оказывают влияние и соседние БС. Однако при фиксированной связи БС поддерживает до 40-45, при подвижной – до 25 каналов передачи трафика – и все это на одной частоте. Технология CDMA требует точной, до микросекунд, синхронизации БС. Для этого используют сигналы глобальной системы позиционирования GPS. Радиус соты – до 20км.

 

Третье поколение сотовой связи (технологии 3G)

 

Основной недостаток систем мобильной связи второго поколения (GSM, CDMA) – низкая скорость передачи данных – 9,6-14,4 кбит/с. Поэтому был инициирован проект создания сетей третьего поколения (3G) IMT-2000, в рамках которого была поставлена задача увеличить скорость потока данных до 2 Мбит/с для малоподвижных абонентов и до 384 кбит/с – для мобильных. В мире сформировались два глобальных партнерских объединения, формирующих стандарты 3G – 3GPP и 3GPP2 (3G Partnership Project). В первое вошли ETSI (Европа), подкомитет Р1 телекоммуникационного комитета ANSI (США), ARIB и ТТС (Япония), SWTS (Китай) и ТТА (Южная Корея). Участники 3GPP сумели согласовать особенности своих подходов к технологии широкополосной CDMA (WCDMA) с частотным (FDD) и временным (TDD) дуплексированием, представив ITU проекты IMT-DS и IMT-TC соответственно. В основу легло европейское предложение UTRA (UMTS Terrestrial Radio Access – радиоинтерфейс наземного доступа к системе UMTS) – UTRA FDD и UTRA TDD. IMT-2000 – это целая совокупность стандартов построения сетей третьего поколения, при этом в качестве одного из стандартов IMT-2000 предложено дальнейшее развитие технологии микросотовых сетей DECT (проект IMT-FT). Члены объединения 3GPP2 предлагают фактически эволюционный путь – варианты развития технологий DAMPS (UWC-136) и CDMA-One (CDMA-2000). Данные предложения представлены ITU как проекты IMT-SC и IMT-MC.

Таким образом, наметилось два пути: революционный – там, где есть свободный частотный ресурс, и эволюционный – в остальных регионах. В 1996 году в городе Чиста (Швеция) компания Ericsson запустила первую опытную сеть с технологией WCDMA. Эта технология легла в основу проекта наземного мобильного сегмента европейской универсальной системы телекоммуникаций UMTS. Было предложено два варианта WCDMA – с частотным и временным разносом прямого и обратного каналов (FDD WCDMA и TDD WCDMA) соответственно для парного (предполагается 2110-2170 и 1920-1980 МГц) и непарного спектра частот. Технология основывается на расширении спектра методом прямой последовательности в полосе 5 МГц на канал. Система может поддерживать требуемые 2 Мбит/с для малоподвижных абонентов и 384 кбит/с – для мобильных. Предусмотрена возможность применения интеллектуальных антенных систем (Smart-антенн с цифровым формированием диаграммы направленности). Принципы технологии FDD WCDMA во многом аналогичны CDMA-One. Одно из принципиальных отличий – сеть на базе FDD WCDMA может быть асинхронной (возможен и синхронный режим).

Для случаев, когда спектральный диапазон ограничен – нет возможности выделять частоты под парные каналы 5 МГц, – проработана версия WCDMA TDD с временным дуплексированием каналов. При этом весь временной диапазон представляет последовательность равных канальных интервалов. В течение каждого из них в каждом из логических каналов (с кодовым разделением) происходит передача в одном направлении – от БС или от МТ. Таким образом, в определенные промежутки все каналы – либо восходящие, либо нисходящие. Соотношение и последовательность восходящих/нисходящих канальных интервалов может гибко изменяться в зависимости от интенсивности трафика в обе стороны. Это крайне важно для многих приложений с асимметричной передачей данных (например, доступ в Интернет). По сравнению с FDD WCDMA сети с TDD должны быть синхронными, в остальном же их параметры практически совпадают.

Развитием метода WCDMA TDD стала система TD-SCDMA, созданная совместно компанией Siemens и китайской Академией телекоммуникационных технологий (China Academy of Telecommunications Technology – СATT). Это стандарт физического уровня беспроводных сетей 3G, одобренный ITU и объединением стандартизирующих организаций 3GPP как часть пула стандартов UMTS. TD-SCDMA (технология CDMA с одной несущей и временным дуплексированием) ориентирована для работы в зонах с высоким дефицитом частотного ресурса – именно такова ситуация в КНР, связанная с высочайшей плотностью населения (в несколько раз выше, чем в густонаселенной Европе).

Сама технология доступа представляет собой комбинацию трех механизмов: временного разделения дуплексных каналов (TDD), временного мультиплексирования каналов (TDMA) и кодового мультиплексирования каналов (CDMA). Обмен происходит циклически повторяющимися кадрами (фреймами) длительностью 5 мс, разделенными на семь временных интервалов (тайм-слотов). Кроме того, в каждом тайм-слоте возможно формирование до 16 CDMA-каналов на основе 16 кодовых последовательностей. Так же предусмотрена возможность гибкого распределения тайм-слотов исходя из фактически передаваемого трафика. Например, в асимметричных приложениях (доступ в Интернет) для восходящего канала можно выделить один тайм-слот, для нисходящего – остальные шесть.

Ширина одной полосы TD-SCDMA 1,6 МГц. Скорость передачи модуляционных символов 1,28 Мчип/с. Это, вместе с переменным числом тайм-слотов во фрейме, назначенных одному соединению, позволяет добиваться скорости передачи данных в широчайшем диапазоне: от 1,2 кбит/с до 2 Мбит/с. Заявленная дальность передачи – 40 км, допустимая максимальная скорость движения мобильного абонента – не менее 120 км/ч. Важнейшее достоинство TD-SCDMA – эффективное использование спектра. Не менее важно, что разработчики TD-SCDMA предусмотрели ее гибкую интеграцию с GSM-сетями, а также мягкий переход к WCDMA-сетям благодаря поддержке сигнализации и протоколов верхних уровней как GSM, так и WCDMA. Более того, первые телефоны стандарта TD-SCDMA были двухмодовыми, на основе GSM-чипсета с дополнительной СБИС поддержки TD-SCDMA. WCDMA (UMTS) изначально разрабатывалась как замена сетей GSM с возможностью плавного перехода. Поэтому ее сетевая инфраструктура совместима с MAP/GSM. Кроме того, она ориентирована на глобальные сети с пакетной коммутацией (IP, Х.25). Операторы могут создавать «островки» WCDMA в особо густонаселенных районах, постепенно расширяя их. Поэтому все абонентские терминалы для WCDMA в Европе будут поддерживать GSM.

Информация о работе Информационные сети и системы