Информационная деятельность человека

Автор работы: Пользователь скрыл имя, 10 Июля 2013 в 19:02, контрольная работа

Краткое описание

К концу XX в. стала складываться, сначала в рамках кибернетики, а затем информатики, информационная картина мира. Информационная картина мира рассматривает окружающий мир под особым, информационным, углом зрения, при этом она не противопоставляется вещественно-энергетической картине мира, но дополняет ее. Строение и функционирование сложных систем различной природы (биологических, социальных, технических) оказалось невозможным объяснить, не рассматривая общих закономерностей информационных процессов.

Прикрепленные файлы: 1 файл

Информация и информационные процессы в природе.docx

— 80.01 Кб (Скачать документ)

Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека.  
    К концу XX в. стала складываться, сначала в рамках кибернетики, а затем информатики, информационная картина мира. Информационная картина мира рассматривает окружающий мир под особым, информационным, углом зрения, при этом она не противопоставляется вещественно-энергетической картине мира, но дополняет ее. Строение и функционирование сложных систем различной природы (биологических, социальных, технических) оказалось невозможным объяснить, не рассматривая общих закономерностей информационных процессов. 
        Получение и преобразование информации является условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например, о температуре и химическом составе среды для выбора наиболее благоприятных условий существования. Биологи образно говорят, что «живое питается информацией», создавая, накапливая и активно используя ее. 
         Любой живой организм, в том числе человек, является носителем генетической информации, которая передается по наследству. Генетическая информация хранится во всех клетках организма в молекулах ДНК, которые состоят из отдельных участков (генов). Каждый ген «отвечает» за определенные особенности строения и функционирования организма и определяет как его возможности, так и предрасположенность к различным наследственным болезням. 
      Чем сложнее организм, тем большее количество генов содержится в молекуле ДНК. Работы по расшифровке генома человека, который содержит более 20 тысяч различных генов, проводились с использованием компьютерных технологий и были в основном закончены в 2000 г. 
        Человек воспринимает окружающий мир (получает информацию) с помощью органов чувств (зрения, слуха, обоняния, осязания, вкуса). Чтобы правильно ориентироваться в мире, он запоминает полученные сведения (хранит информацию). В процессе достижения каких-либо целей человек принимает решения (обрабатывает информацию), а в процессе общения с другими людьми — передает и принимает информацию. Человек живет в мире информации. 
       Процессы, связанные с получением, хранением, обработкой и передачей информации, называются информационными процессами. 
         Человеческое мышление можно рассматривать как процесс обработки информации. Человек является носителем очень большого объема информации в виде зрительных образов, знания различных фактов и теорий и т. д. Весь процесс познания является процессом получения и накопления информации. Для обмена информацией между людьми служат языки. Хранение информации осуществляется с помощью книг, а в последнее время все больше посредством электронных носителей. 
         Информационные процессы характерны не только для живой природы, человека и общества, но и для техники. Человеком разработаны технические устройства, в частности компьютеры, которые специально предназначены для автоматической обработки информации. Создание глобальной компьютерной сети Интернет позволило обеспечить для каждого человека потенциальную возможность быстрого доступа ко всему объему информации, накопленному человечеством за всю его историю. 
         Информационный подход к исследованию мира реализуется в рамках информатики, комплексной науки об информации и информационных процессах.

 

Двоичная система счисления. Запись чисел в двоичной системе счисления.  
 
    Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью цифр — символов некоторого алфавита. Например, в десятичной системе для записи числа существует десять всем хорошо известных цифр: О, 1, 2 и т. д. 
         Все системы счисления делятся на позиционные и непозиционные. В позиционных системах счисления значение цифры зависит от ее положения в записи числа, а в непозиционных — не зависит. Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. 
         Каждая позиционная система использует определенный алфавит цифр и основание. В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения цифр соседних разрядов числа. 
         Наиболее распространенными в настоящее время позиционными системами счисления являются десятичная и двоичная (табл. 1). 
     
      
         Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается трижды, причем самая правая обозначает пять единиц, вторая справа — пять десятков и, наконец, третья — пять сотен. 
         Число 555 записано в привычной для нас свернутой форме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различные степени числа 10. 
         В развернутой форме запись числа 555 в десятичной системе выглядит следующим образом: 
     
      
         Как видно из примера, число в позиционных системах счисления записывается в виде суммы степеней основания (в данном случае 10), коэффициентами при этом являются цифры данного числа. 
         В двоичной системе основание равно 2, а алфавит состоит из двух цифр (0 и 1). В развернутой форме двоичные числа записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры 0 или 1. 
         Например, развернутая запись двоичного числа 1012 будет иметь вид: 
         .

 

 

 

     Магистрально-модульный принцип построения компьютера

 
    В основу архитектуры современных  персональных компьютеров положен  магистрально-модульный принцип (рис. 7). Модульный принцип позволяет  потребителю самому комплектовать  нужную ему конфигурацию компьютера и производить при необходимости  ее модернизацию. Модульная организация  компьютера опирается на магистральный (шинный) принцип обмена информацией  между устройствами. 
          
     
     Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления. 
         Шина данных. По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. За 25 лет, со времени создания первого персонального компьютера (1975 г.), разрядность шины данных увеличилась с 8 до 64 бит. 
         Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т. е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле: 
          
         В первых персональных компьютерах разрядность шины адреса составляла 16 бит, а количество адресуемых ячеек памяти —  
         В современных персональных компьютерах разрядность шины адреса составляет 32 бита, а максимально возможное количество адресуемых ячеек памяти равно Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и т. д.

 

Кодирование информации. Способы кодирования  
 
    Кодирование информации. В процессе преобразования информации из одной формы представления (знаковой системы) в другую осуществляется кодирование. Средством кодирования служит таблица соответствия, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. 
         В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре выполняется его кодирование, т. е. преобразование в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс — декодирование, когда из компьютерного кода знак преобразуется в графическое изображение. 
         Кодирование изображений и звука. Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно. 
         Примером аналогового представления графической информации может служить, скажем, живописное полотно, цвет которого изменяется непрерывно, а дискретного — изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета. 
         Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью). 
         Графическая и звуковая информация из аналоговой формы в дискретную преобразуется путем дискретизации, т. е. разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода. 
         Дискретизация — это преобразование непрерывных изображений и звука в набор дискретных значений, каждому из которых присваивается значение его кода. 
         Кодирование информации в живых организмах. Генетическая информация определяет строение и развитие живых организмов и передается по наследству. Хранится генетическая информация в клетках организмов в структуре молекул ДНК (дезоксирибонукле-иновой кислоты). Молекулы ДНК состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит. 
         Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т. д.  
    

 

 

Основные характеристики компьютера (разрядность, тактовая частота, объем оперативной и внешней памяти, производительность и др.)  
 
    Процессор. Важнейшей характеристикой процессора, определяющей его быстродействие, является его частота, т. е. количество базовых операций (например, операций сложения двух двоичных чисел), которые производит процессор за 1 секунду. За двадцать с небольшим лет тактовая частота процессора увеличилась в 500 раз, от 4 МГц (процессор 8086, 1978 г.) до 2 ГГц (процессор Pentium 4, 2001 г.). Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность процессора определяется количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессора увеличилась за 20 лет в 8 раз. В первом отечественном школьном компьютере «Агат» (1985 г.) был установлен процессор, имевший разрядность 8 бит, у современного процессора Pentium 4 разрядность равна 64 бит. 
         Оперативная (внутренняя) память. Оперативная память представляет собой множество ячеек, причем каждая ячейка имеет свой уникальный двоичный адрес. Каждая ячейка памяти имеет объем 1 байт. 
         В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Например, объем адресуемой памяти может достигать 4 Гбайт, а величина фактически установленной оперативной памяти будет значительно меньше — скажем, * всего» 64 Мбайт. 
         Оперативная память аппаратно реализуется в виде модулей памяти различных типов (SIMM, DIMM) и разного объема (от 1 до 256 Мбайт). Модули различаются по своим геометрическим размерам: устаревшие модули SIMM имеют 30 или 72 контакта, а современные модули DIMM — 168 контактов. 
         Долговременная (внешняя) память. В качестве внешней памяти используются носители информации различной информационной емкости: гибкие диски (1,44 Мбайт), жесткие диски (до 50 Гбайт), оптические диски CD-ROM (650 Мбайт) и DVD (до 10 Гбайт). Самыми медленными из них по скорости обмена данными являются гибкие диски (0,05 Мбайт/с), а самыми быстрыми — жесткие диски (до 100 Мбайт/с). 
         Производительность компьютера. Производительность компьютера является его интегральной характеристикой, которая зависит от частоты и разрядности процессора, объема оперативной (внутренней) и долговременной (внешней) памяти и скорости обмена данными. Производительность компьютера нельзя вычислить, она определяется в процесее тестирования по скорости выполнения определенных операций в стандартной программной среде.

 

Качественные и количественные характеристики информации. Свойства информации (новизна, актуальность, достоверность и др.). Единицы измерения количества информации  
 
    Информация в биологии. В биологии понятие информация связывается с целесообразным поведением живых организмов. Такое поведение строится на основе получения и использования информации об окружающей среде. 
         Понятие информация в биологии применяется также в связи с исследованиями механизмов наследственности. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Гены представляют собой сложные молекулярные структуры, содержащие информацию о строении живых организмов. Последнее обстоятельство позволило проводить научные эксперименты по клонированию, т. е. созданию точных копий организмов из одной клетки. 
         Информация в кибернетике. В кибернетике (науке об управлении) понятие информация используется для описания процессов управления в сложных системах (живых организмах или технических устройствах). Жизнедеятельность любого организма или нормальное функционирование технического устройства связано с процессами управления. Процессы управления включают в себя получение, хранение, преобразование и передачу информации. 
         Информация и знания. Человек получает информацию из окружающего мира с помощью органов чувств, анализирует ее и выявляет существенные закономерности посредством мышления, хранит полученную информацию в памяти. Процесс систематического научного познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.).  
         Только при условии, что информация полезна, дискуссия приобретает практическую ценность. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации. Примерами передачи и получения бесполезной информации могут служить некоторые конференции и чаты в Интернете. 
         Широко известен термин «средства массовой информации» (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Обязательно, чтобы такая информация была достоверной и актуальной. Недостоверная информация вводит членов общества в заблуждение и может стать причиной возникновения социальных потрясений. Неактуальная информация бесполезна, и поэтому никто, кроме историков, не читает прошлогодних газет. 
         Чтобы человек мог правильно ориентироваться в окружающем мире, ему нужна полная и точная информация. Задача получения полной и точной информации стоит перед наукой. Человек получает полную и точную информацию о природе, обществе и технике в процессе обучения. 
         Единицы измерения количества информации. За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность знаний т два раза. Такая единица названа бит. 
         Следующей по величине единицей измерения количества информации является байт, причем 
         1 байт = 2^3 бит = 8 бит. 
         Кратные байту единицы измерения количества информации вводятся следующим образом: 
        

 

 

 

 

 

 

Способы записи алгоритмов (описательный, графический, на алгоритмическом языке, на языке программирования).  
 
    Алгоритм позволяет формализовать выполнение задачи. Предположим, что пользователю надо провести редактирование текста и из текста «информационная модель» получить текст «модель информационная». 
         Запись алгоритма на естественном языке. Запишем необходимую последовательность действий, т. е. алгоритм Редактирование текста, на естественном языке9 который понятен человеку (пользователю компьютера): 
         1) выделить слово информационная + пробел; 
         2) вырезать этот фрагмент; 
         3) установить курсор на позицию после слова модель + пробел; 
         4) вставить фрагмент текста. 
        Запись алгоритма на алгоритмическом языке. Каждая команда алгоритма должна однозначно определить действие исполнителя, т. е. алгоритм должен быть точным. Однако естественный язык не очень подходит для записи алгоритмов, так как не обладает достаточной строгостью и определенностью при записи команд. 
         Для достижения необходимой точности и строгости алгоритм следует формализовать, т. е. записать на одном из формальных языков. В школьной информатике в качестве такого формального языка часто используют алгоритмический язык. 
         Запишем алгоритм Редактирование текста на алгоритмическом языке: 
         алг Редактирование текста  
         дано информационная модель  
         надо модель информационная  
         нач 
        выделить символы с 1 по 15 
         вырезать 
         установить курсор на позицию 7 
         вставить 
         кон 
          
         Запись алгоритма на языке программирования. 
         Чтобы исполнитель Компьютер мог автоматически выполнить алгоритм, он должен быть записан на понятном для этого исполнителя языке, т. е. на языке программирования

 

Правовая охрана программ и данных. Защита информации.  
 
    Правовая охрана программ и данных. Правовая охрана программ для ЭВМ и баз данных впервые в полном объеме введена в Российской Федерации Законом «О правовой охране программ для электронных вычислительных машин и баз данных», который вступил в силу 20 октября 1992 г. 
         Предоставляемая настоящим законом правовая охрана распространяется на все виды программ для компьютеров (в том числе на операционные системы и программные комплексы), которые могут быть выражены на любом языке и в любой форме. 
         Для признания и реализации авторского права на компьютерную программу не требуется ее регистрация в какой-либо организации. Авторское право на компьютерную программу возникает автоматически при ее создании. 
         Для оповещения о своих правах разработчик программы может, начиная с первого выпуска в свет программы, использовать знак охраны авторского права, состоящий из трех элементов: 
         — буквы С в окружности или круглых скобках; 
наименования (имени) правообладателя;  года первого выпуска программы. 
         Автору программы принадлежит исключительное право на воспроизведение и распространение программы любыми способами, а также на осуществление модификации программы. 
         Защита информации. 
         Защита от нелегального копирования и использования. Программная защита для предотвращения копирования дистрибутивных дискет может состоять в применении нестандартного форматирования. Кроме того, на дискете или CD-ROM может быть размещен закодированный программный ключ, без которого программа становится непригодной к работе и который теряется при копировании. 
         Аппаратную защиту от нелегального использования можно реализовать с помощью аппаратного клю-ча, который присоединяется обычно к параллельному порту компьютера. 
         Защита доступа к компьютеру. Для защиты от несанкционированного доступа к данным, хранящимся на компьютере, служат пароли. Компьютер разрешает доступ к своим ресурсам только тем пользователям, которые зарегистрированы и ввели правильный пароль. Каждому конкретному пользователю может быть разрешен доступ только к определенным информационным ресурсам. При этом возможна регистрация всех попыток несанкционированного доступа. 
         Защита дисков, папок и файлов. Каждый диск, папку и файл можно защитить от несанкционированного доступа: например, установить определенные права доступа (полный или только чтение), причем разные для различных пользователей. 
         Защита информации в Интернете. На серверах в Интернете размещается различная важная информация: Web-сайты, файлы и т. д. Если компьютер подключен к Интернету, то в принципе любой пользователь, также подключенный к Интернету, может получить доступ к информационным ресурсам этого сервера. Он в состоянии изменить или заменить Web-страницу сайта, стереть или, наоборот, записать файл и т. д. Чтобы этого не происходило, доступ к информационным ресурсам сервера (его администрирование) производится по паролю.    
     Если сервер имеет соединение с Интернетом и одновременно служит сервером локальной сети (Интранет-сервером), то возможно несанкционированное проникновение из Интернета в локальную сеть. Во избежание этого устанавливается программный или аппаратный барьер между Интернетом и Интранетом с помощью брандмауэра (firewall). Брандмауэр отслеживает передачу данных между сетями и предотвращает несанк-ционированный доступ. 
    

Информация о работе Информационная деятельность человека