Автор работы: Пользователь скрыл имя, 20 Ноября 2013 в 16:39, курсовая работа
Целью исследования операций является выявление наилучшего способа действия при решение той или иной задачи. Главная роль при этом отводится математическому моделированию. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений. Цель и ограничения должны быть представлены в виде функций.
ВВЕДЕНИЕ……………………………………………………………………
1 ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ………………………….
Задача динамического программирования………………………..
Примеры задач динамического программирования……………...
Общая структура динамического программирования…………...
2 ЗАДАЧА О ЗАГРУЗКЕ……………………………………………………
2.1 Общие сведения…………………………………………………………
2.2 Рекуррентные соотношения для процедур прямой и обратной прогонки………………………………………………………………………
2.3 Решение задачи о загрузке…………………………………………….
2.4 Анализ чувствительности решения…………………………………..
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ……………………
Пусть fi(t)-максимальная прибыль, получаемая за годы от і до n при условии, что в начале і-ого года имеется механизм t-летнего возраста.
Рекуррентное уравнение имеет следующий вид:
(1)-если эксплуатировать механизм,
(2)-если заменить механизм.
Задача инвестирования:
Предположим, что в начале каждого из следующих n лет необходимо сделать инвестиции P1, P2,…, Pn соответственно. Вы имеете возможность вложить капитал в два банка: первый банк выплачивает годовой сложный процент r1, а второй - r2. Для поощрения депозитов оба банка выплачивают новым инвесторам премии в виде процента от вложенной суммы.
Премиальные меняются от года к году, и для і-ого года равны qi1 и qi2 в первом и втором банках соответственно. Они выплачиваются к концу года, на протяжении которого сделан вклад, и могут быть инвестированы в один из двух банков на следующий год. Это значит, что лишь указанные проценты и новые деньги могут быть инвестированы в один из двух банков. Размещенный в банке вклад должен находится там до конца рассматриваемого периода. Необходимо разработать стратегию инвестиции на следующие n лет.
Элементы модели динамического программирования следующие:
Заметим, что по определению =xi-li. Следовательно,
где і=2,3,…n, x1=P1. Сумма денег xi, которые могут быть инвестированы, включает лишь новые деньги и премиальные проценты за инвестиции, сделанные на протяжении (і-1)-го года.
Пусть fi(xi)- оптимальная сумма инвестиций для интервала от і-го до n-го года при условии, что в начале і-го года имеется денежная сумма xi. Далее обозначим через si накопленную сумму к концу n-го года при условии, что li и (xi-li)-объемы инвестиций на протяжении і-го года в первый и второй банк соответственно. Обозначая , і=1,2, мы можем сформулировать задачу в следующем виде.
Максимизировать z=s1+s2+…+sn, где
Так как премиальные за n-й год являются частью накопленной денежной суммы от инвестиций, в выражения для sn добавлены qn1 и qn2.
Итак, в данном случае рекуррентное уравнение для обратной прогонки в алгоритме динамического программирования имеет вид
где xi+1 выражается через xi в соответствии с приведенной выше формулой, а fn+1(xn+1)=0.
1.3 Общая
структура динамического
Отыскание оптимальной стратегии принятия набора последовательных решений, в большинстве случаях, производится следующим образом: сначала осуществляется выбор последнего во времени решения, затем при движении в направлении, обратном течению времени, выбираются все остальные решения вплоть до исходного.
Для реализации такого метода необходимо выяснить все ситуации, в которых может происходить выбор последнего решения. Обычно условия, в которых принимается решение, называют «состоянием» системы. Состояние системы – это описание системы, позволяющее, учитывая будущие решения, предсказать ее поведение. Нет необходимости выяснять, как возникло то ил иное состояние или каковы были предшествующие решения. Это позволяет последовательно выбирать всего по одному решению в каждый момент времени. Независимо от того, отыскивают оптимальные решения с помощью табличного метода и последующего поиска или аналитическим путем, обычно быстрее и выгоднее производить выбор по одному решению в один момент времени, переходя затем к следующему моменту и т.д. К сожалению, таким методом можно исследовать не все процессы принятия решений. Необходимым условием применения метода динамического программирования является аддитивность цен всех решений, а также независимость будущих результатов от предыстории того или иного состояния.
Если число решений очень велико, то можно построить относительные оценки состояний так, чтобы оценки, отвечающие каждой паре последовательных решений, отличались друг от друга на постоянную величину, представляющую собой средний «доход» на решение. Также можно выполнять дисконтирование доходов от будущих решений. Необходимость в этом иногда появляется в том случае, когда решение принимаются редко, скажем раз в году. Тогда уже не нужно рассматривать последовательно 1,2,3…решения, чтобы достичь решения с большим номером. Вместо этого можно непосредственно оперировать функциональным уравнением, что, как правило, дает существенную выгоду с точки зрения сокращения объема вычислений.
2 ЗАДАЧА О ЗАГРУЗКЕ
2.1 Общие сведения
Задача о загрузке – это задача о рациональной загрузке судна (самолета, автомашины и т.п.), которое имеет ограничения по объему или грузоподъемности. Каждый помещенный на судно груз приносит определенную прибыль. Задача состоит в определении загрузки судна такими грузами, которые приносят наибольшую суммарную прибыль.
Рекуррентное уравнение процедуры обратной прогонки выводится для общей задачи загрузки судна грузоподъемностью W предметов (грузов) n наименований. Пусть mi-количество предметов і-го наименования, подлежащих загрузке, ri-прибыль, которую приносит один загруженный предмет і-го наименования, wi-вес одного предмета і-го наименования. Общая задача имеет вид следующей целочисленной задачи линейного программирования.
Максимизировать z=r1m1+r2m2+…+rnmn.
при условии, что
w1m1+w2m2+…+wnmn
m1,m2,…,mn
Три элемента модели динамического программирования определяются следующим образом:
Пусть fi(xi)-максимальная суммарная прибыль от этапов і,і+1,...,n при заданном состоянии xi. Проще всего рекуррентное уравнение определяется с помощью следующей двухшаговой процедуры.
Шаг 1. Выразим fi(xi) как функцию fi+1(xi+1) в виде
где fn+1(xn+1)=0.
Шаг 2. Выразим xi+1 как функцию xi для гарантии того, что левая часть последнего уравнения является функцией лишь xi. По определению xi-xi+1 представляет собой вес, загруженный на этапе і, т.е. xi-xi+1=wimi или xi+1=xi-wimi. Следовательно, рекуррентное уравнение приобретает следующий вид:
2.2 Рекуррентные
соотношения для процедур
Фермеру принадлежит стадо овец, насчитывающее k голов. Один раз в год фермер принимает решение о том, сколько овец продать и сколько оставить. Прибыль от продажи одной овцы в і-м году составляет pi. Количество оставленных в i-м году овец удваивается в (1+1)-м году. По истечении п лет фермер намеревается продать все стадо.
Этот чрезвычайно простой пример приводится для того, чтобы наглядно продемонстрировать преимущества алгоритма обратной прогонки по сравнению с алгоритмом прямой прогонки. Вычислительные схемы процедур прямой и обратной прогонки обладают различной эффективностью в случаях, когда этапы модели нумеруются в некотором специальном порядке. Такая ситуация имеет место в приводимом примере, где этап j ставится в соответствие году j, т. е. этапы должны рассматриваться в хронологическом порядке.
Сначала построим рекуррентные соотношения для процедур прямой и обратной прогонки, а затем проведем сравнение двух вычислительных схем. Важное различие между двумя формулировками непосредственно следует из определения состояния.
Обозначим количества оставленных и проданных в j-м году овец через xj и yj, соответственно. Положим Zj,=xj+yj. Из условий задачи следует, что
z1=2x0=2k,
zj=2xj-1,j=l,2,
...,n.
Состояние на
этапе j можно описать с помощью
переменной zj, которая выражает
количество имеющихся к концу этапа j овец
для распределения на этапах j+1, j+2, ..., n,
или с помощью переменной xj, которая
выражает количество имеющихся к началу
этапа j+1 овец, обусловленное принятыми
на этапах 1,2,...,j решениями. Первое определение
ориентировано на построение рекуррентного
соотношения
для процедуры обратной прогонки, тогда
как второе определение приводит к использованию
алгоритма прямой прогонки.
Обозначим через fi(zi) максимальную прибыль, получаемую на этапах j,j+1,…,n, при заданном zj. Рекуррентное соотношение имеет следующий вид:
Заметим, что yj и zj - неотрицательные целые числа. Кроме того, уj (количество овец, проданных в конце периода j) должно быть меньше или равно zj. Верхней границей для значений zj, является величина 2jk (где k- исходный размер стада), которая соответствует отсутствию продажи.
Обозначим через gj(xj) максимальную прибыль, получаемую на этапах 1,2,...,j при заданном xj, (где xj— размер стада к началу этапа J+1). Рекуррентное соотношение записывается в следующем виде:
Сравнение двух формулировок показывает, что представление xj-1 через xj создает более существенные препятствия для вычислений, чем представление zj+1 через zj.
В замене xj-1=(xj+yj)/2 подразумевается целочисленность правой части, тогда как на равенство zj+1=2(zj-yj) такое требование не накладывается. Таким образом в случае процедуры прямой прогонки значения yj и xj, связанные неравенством
Yj <=2jk -Xj,
должны дополнительно
удовлетворять условию
2.3 Решение задачи о загрузке
Контрольная работа содержит вопросы по N различным темам. Каждый вопрос типа i имеет вес Vi(i=1,2,…N), а также время, отводимое на ответ Wi. Максимально время, которое может затратить студент на контрольную работу W. Требуется определить максимальное количество баллов (вес), которое может набрать студент за отведенное время W=30. Данные приведены в таблице:
I |
Wi |
Vi |
1 5 2 6 3 4 4 3 5 6 6 7 5 8 7 |
2 3 1 4 7 5 3 2 |
2 3 2 4 6 5 4 2 |
Решить задачу, приведя ее к рекуррентным соотношениям.
Сначала рассмотрим задачу в общей постановке. Если обозначить количество вопросов типа і через ki, то задача принимает следующий вид:
при ограничениях
ki-неотрицательные числа.
Если отбросить требования целочисленности ki, то решение задачи нетрудно найти с помощью симплекс-метода (см. Приложение В). В самом деле, так как остается лишь одно ограничение, базисной будет только одна переменная, и задача сводится к выбору типа і, для которого величина viW/wi принимает максимальное значение. Исходная задача не является задачей линейного программирования, и для ее решения необходимо использовать метод динамического программирования. Следует отметить, что рассматриваемая задача может быть также решена с помощью методов целочисленного программирования.
Каждый из трех основных элементов модели ДП определяется следующим образом.