Беспроводные технологии

Автор работы: Пользователь скрыл имя, 31 Октября 2014 в 09:19, курсовая работа

Краткое описание

Цель выполнения работы является рассмотрение перспектив развития беспроводных технологий.
Объектом исследования являются беспроводные технологии.
Предметом исследования является анализ развития беспроводных технологий.
Для достижения цели были поставлены задачи:
1. Проанализировать виды беспроводной связи;
2. Исследовать технологию сетей стандарта 3G.

Прикрепленные файлы: 1 файл

беспроводные технологии.doc

— 492.00 Кб (Скачать документ)

Подсистема базовых станций BSS (Base Station Subsystem) - устройство управления радиоканалами связи с MS.

Сетевая подсистема NSS (Network Subsystem), ядром которой является центр коммутации услуг подвижной связи MSC (Mobile services Switching Center), управляет услугами подвижной связи и взаимодействием абонентов сети GSM и других типов сетей.

SS7 стандартизована  на международном уровне и  предназначена для обмена сигнальной  информацией в цифровых сетях  связи с цифровыми программно-управляемыми станциями. Система оптимизирована для работы по цифровым каналам со скоростью 64 кбит/с и позволяет управлять процессом соединения, а также передавать информацию техобслуживания и эксплуатации. Кроме того ее можно пименять в качестве надежной транспортной системы для передачи других видов информации между станциями и специализированными центрами в сетях телекоммуникаций.

SS7 использует  метод передачи сигнальной информации  по специальному каналу, общему  для одного или нескольких  пучков информационных каналов. Сигнальная информация должна передаваться в правильной последовательности, без потерь, при этом могут быть задействованы и наземные, и спутниковые каналы. Сеть SS7 является обязательным условием создания сети стандарта GSM. Архитектура протоколов SS7 и ее соответствие эталонной модели взаимодействия открытых систем показаны на рис 1.3.2.

Рисунок 1.3.2 – Система сигнализации SS7.

Опорный регистр местонахождения HLR (Home Location Register) и визитный регистр местонахождения VLR (Visitor Location Register), вместе с MSC, обеспечивают возможности маршрутизации и роуминга. HLR содержит все данные административного характера о каждом зарегистрированном абоненте в соответствующей данному HLR сети GSM, а также информацию о его текущем местонахождении. Информация о местонахождении абонента, как правило, предоставляется в виде сигнального адреса VLR, ассоциированного с подвижной станцией.

VLR содержит  выборочную административную информацию  из опорного регистра, необходимую  для управления вызовом и предоставления всего комплекса услуг для каждого подвижного абонента, который в этот момент находится в географической зоне, управляемой данным VLR.

Другие два регистра используются для обеспечения аутентификации и безопасности.

Ширина полосы спектра для действующих в Европе сетей сотовой подвижной связи - 890-915 Мгц для восходящего звена (от подвижной станции к базовой) и 935-960 МГц для нисходящего звена (от базовой стации к подвижной). Поскольку данные диапазоны уже использовались аналоговыми системами в начале 80-х годов, верхние 10 МГц каждой полосы зарезервированы для сети GSM, которая еще только разрабатывается. В конце концов GSM займет всю полосу шириной 2x25 МГц.

Поскольку радиоспектр имеет ограниченные ресурсы, необходимо оптимально распределить ширину полосы между всеми возможными пользователями. Метод, применяемый с этой целью в GSM, - это комбинация методов множественного доступа TDMA и FDMA (Time- and Frequency-Division Multiple Access).

Сначала полоса частот в 25 Мгц делится на полосы в 200 Кгц. Каждой станции соответсвует своя полоса (или несколько полос). Абоненты полосы разделены во времени. Каждому абоненту соответствует один кадр. Восемь кадров объединяются во фрейм. 26 фреймов, в свою очередь, образуют мультифрейм, который повторяется циклически. Длина мультифрейма - 120 миллисекунд. На один кадр приходится 1/200 мультифрейма, т.е. около 0.6 миллисекунды.

Каналы определяются числом и позицией соответствующих им цикличных кадров, и вся палитра повторяется приблизительно каждые 3 часа. Они делятся на предписанные каналы (dedicated channels), или каналы трафика, каждый из которых соответствует одной подвижной станции, и общие каналы (common channels), или каналы управления, используемые подвижными станциями в пассивном режиме.

Каналы трафика (TCH) применяются для переноса речевого потока и потока данных. Эти каналы для восходящего и нисходящего звеньев разделены во времени тремя кадрами, так, чтобы MS мог осуществлять прием и передачу информации в разное время. Это позволяет упростить электронное оборудование MS и сделать подвижный терминал более компактным12.Общие каналы используются свободными подвижными станциями при обмене сигнальной информацией, необходимой для перехода в режим занятости. Подвижные станции, находящиеся в режиме занятости, оповещают близлежащие базовые станции о перемещении в другую ячейку и передают необходимую информацию.

Рисунок 1.3.3 – Структура мультифрейма GSM.

GSM - система цифровая, поэтому требует  оцифровывания аналоговой речи. Метод, используемый существующими  телефонными системами и сетью ISDN для мультиплексирования аналоговых линий на высокоскоростных каналах и оптических линиях, называется импульсно-кодовой модуляцией PCM (Pulse Coded Modulation). Скорость выходного потока в PCM 64 кбит/с слишком высока для передачи по радиоканалам системы GSM. Исследовательская группа GSM изучила несколько алгоритмов кодирования речи, пока, наконец, не остановила свой выбор на схеме кодирования RPE-LTP (Regular Pulse Excitation-Long Term Prediction). Схема осуществляет перевод речевого потока, поступающего со скоростью 64 кбит/c, в поток со скоростью 13 кбит/с, и обратно, с сохранением качества передаваемого сигнала.

Радио- и фиксированные каналы, участвующие в вызове абонента в GSM, не привязаны к данному вызову. Благодаря этому появляется возможность для перемещения подвижного абонента из ячейки в ячейку в процессе вызова, который и называется хендовером.

В системе GSM существует четыре типа хендоверов со следующими характеристиками:

–  каналы в одной и той же ячейке;

–  соты (BTS), находящиеся под управлением одного и того же BSC;

–  соты, находящиеся под управлением различных BSC, но принадлежащие одному MSC;

–  соты, находящиеся под управлением различных MSC.

Первые два типа хендоверов (внутренние) используют только один BSC. Для сохранения ширины полосы сигнализации они управляются при помощи BSC, и при этом MSC не использут, а лишь уведомляют его о завершении хендовера. Последние два типа хендоверов, которые называются внешними, совершаются под управлением вовлеченных в процедуру MSC.

Инициаторами хендовера может стать и подвижный терминал, и MSC (для сохранения баланса нагрузки трафика). Подвижный терминал создает список из шести вариантов для возможного переключения, исходя из интенсивности полученых сигналов. Эта информация передается BSC и MSC, по крайней мере один раз в секунду, и используется алгоритмом хендовера.

В отличие от фиксированных сетей, где абонентский терминал проводами подключен к центральному офису, абонент сети GSM может перемещаться в пределах национальной сети и за ее границами, т.е. осуществлять роуминг. Чтобы дозвониться до подвижного абонента, необходимо набрать номер, называемый номером подвижного абонента цифровой сети с интеграцией служб MSISDN (Mobile Subscriber ISDN). Такой номер содержит код страны и национальный код назначения, идентифицирующий оператора данного абонента. Первые несколько цифр номера идентифицируют HLR абонента в его сети подвижной связи.

Входящий вызов подвижного абонента направляется для обработки шлюзом GMSC (Gateway MSC). GMSC в основном выполняет функции коммутатора, запрашивающего HLR абонента о получении необходимых данных и о маршрутизации, и поэтому содержит таблицу соединения номеров MSISDN с соответствующими им HLR. Номер роуминга подвижной станции MSRN (Mobile Station Roaming Number) полностью определяет маршрутизацию,относится к географическому плану нумерации и никак не связан с абонентами.

1.4. Сети  транкинговой связи

Системы транкинговой радиосвязи, представляющие собой радиально-зоновые системы подвижной УКВ радиосвязи, осуществляющие автоматическое распределение каналов связи ретрансляторов между абонентами, являются классом систем подвижной связи, ориентированным, прежде всего, на создание различных ведомственных и корпоративных сетей связи, в которых предусматривается активное применение режима связи абонентов в группе. Они широко используются силовыми и правоохранительными структурами, службами общественной безопасности, транспортными и энергетическими компаниями различных стран для обеспечения связи подвижных абонентов между собой, со стационарными абонентами и абонентами телефонной сети13.

Существует большое количество различных стандартов транкинговых систем подвижной радиосвязи общего пользования (СПР-ОП), отличающихся друг от друга методом передачи речевой информации (аналоговые и цифровые), типом многостанционного доступа (с частотным разделением каналов (МДЧР), временным (МДВР) или кодовым (МДКР)), способом поиска и назначения канала (с децентрализованным и централизованным управлением), типом канала управления (выделенный и распределенный) и другими характеристиками.

В настоящее время широко распространены появившиеся раньше аналоговые транкинговые системы радиосвязи такие, как SmarTrunk, системы протокола МРТ 1327 (ACCESSNET, ACTIONET и др.), cистемы фирмы Motorola (Startsite, Smartnet, Smartzone), системы с распределенным каналом управления (LTR и Multi-Net фирмы E.F.Johnson Co и ESAS фирмы Uniden). Некоторые из них используются правоохранительными органами различных стран для построения своих сетей подвижной радиосвязи.

Цифровые стандарты транкинговой радиосвязи пока не получили такого широкого распространения в связи с более высокой стоимостью оборудования. Вместе с тем, круг пользователей цифровых транкинговых систем постоянно расширяется, что объясняется рядом их преимуществ перед аналоговыми системами такими, как большая спектральная эффективность за счет применения сложных видов модуляции сигнала и низкоскоростных алгоритмов речепреобразования, повышенная емкость систем связи, выравнивание качества речевого обмена по всей зоне обслуживания базовой станции за счет применения цифровых сигналов в сочетании с помехоустойчивым кодированием. Развитие мирового рынка систем транкинговой радиосвязи сегодня характеризуется широким внедрением цифровых технологий. Ведущие мировые производители оборудования транкинговых систем объявляют о переходе к цифровым стандартам радиосвязи, предусматривая при этом либо выпуск принципиально нового оборудования, либо адаптацию аналоговых систем к цифровой связи.

Цифровые транкинговые системы по сравнению с аналоговыми обеспечивают ряд преимуществ за счет реализации требований по повышенной оперативности и безопасности связи, предоставлению широких возможностей по передаче данных, более широкому спектру услуг связи (включая специфические услуги связи для реализации специальных требований служб общественной безопасности), возможностям организации взаимодействия абонентов различных сетей.

  1. Высокая оперативность связи. Прежде всего, это требование означает минимально возможное время установления канала связи (время доступа) при различных видах соединений (индивидуальных, групповых, с абонентами телефонных сетей и пр.). В конвенциональных системах связи при передаче цифровой информации, требующей временной синхронизации передатчика и приемника, для установления канала связи требуется большее время, чем аналоговой системе. Однако, для транкинговых систем радиосвязи, где информационный обмен, в основном, производится через базовые станции, цифровой режим сравним по времени доступа с аналоговым (и в аналоговых, и в цифровых системах системах радиосвязи, как правило, канал управления реализуется на основе цифровых сигналов).

Кроме этого, в системах цифровой транкинговой радиосвязи более просто реализуются различные режимы связи, повышающие ее оперативность, такие, как режим непосредственной {прямой} связи между подвижными абонентами (без использования базовой станции), режим открытого канала (выделения и закрепления частотных ресурсов сети за определенной группой абонентов для ведения ими в дальнейшем переговоров без выполнения какой-либо установочной процедуры, в т.ч. без задержки), режимы аварийных и приоритетных вызовов и др.

  1. Передача данных. Цифровые системы транкинговой радиосвязи лучше приспособлены к различным режимам передачи данных, что предоставляет абонентам цифровых сетей широкие возможности оперативного получения сведений из централизованных баз данных, передачи необходимой информации, включая изображения, организации централизованных диспетчерских систем местоопределения подвижных объектов на основе спутниковых радионавигационных систем. Скорость передачи данных в цифровых системах значительно выше, чем в аналоговых.

В большинстве систем радиосвязи на основе цифровых стандартов реализуются услуги передачи коротких и статусных сообщений, персонального радиовызова, факсимильной связи, доступа к фиксированным сетям связи (в т.ч. работающим на основе протоколов TCP/IP) 14.

  1. Безопасность связи. Включает в себя требования по обеспечению секретности переговоров (исключение возможности извлечения информации из каналов связи кому-либо кроме санкционированного получателя) и защиты от несанкционированного доступа к системе (исключение возможности захвата управления системой и попыток вывести ее из строя, защита от «двойников» и т.п.). Как правило, основными механизмами обеспечения безопасности связи является шифрование и аутентификация абонентов.

Естественно, что в системах цифровой радиосвязи гораздо легче обеспечить безопасность связи по сравнению с аналоговыми. Даже без принятия специальных мер по закрытию информации цифровые системы обеспечивают повышенный уровень защиты переговоров (аналоговые сканирующие приемники непригодны для прослушивания переговоров в системах цифровой радиосвязи). Кроме того, некоторые стандарты цифровой радиосвязи предусматривают возможность сквозного шифрования информации, что позволяет использовать оригинальные (т.е. разработанные самим пользователем) алгоритмы закрытия речи.

Цифровые системы транкинговой радиосвязи позволяют использовать разнообразные механизмы аутентификации абонентов: различные идентификационные ключи и SIM-карты, сложные алгоритмы аутентификации, использующие шифрование и т.п.

Информация о работе Беспроводные технологии