Апаратна складова локально-обчислювальних мереж

Автор работы: Пользователь скрыл имя, 17 Марта 2015 в 22:52, реферат

Краткое описание

Комп'ютерна мережа (обчислювальна мережа, мережа передачі даних) - система зв'язку комп'ютерів і/або комп'ютерного устаткування (сервери, маршрутизатори і інше устаткування, канали зв'язку). Для передачі інформації можуть бути використані різні фізичні явища, як правило - різні види електричних, світлових сигналів або електромагнітного випромінювання.

Прикрепленные файлы: 1 файл

Апаратна складова локально-обчислювальних мереж..docx

— 139.19 Кб (Скачать документ)

Комутатор локальної мережі

Комутатор локальної мережі (local - area network switch) - пристрій, що забезпечує взаємодію сегментів одній або групи локальних мереж.

Комутатор локальної мережі, як і звичайний комутатор, забезпечує взаємодію підключених до нього локальних мереж. Але на додаток до цього він здійснює перетворення інтерфейсів, якщо з'єднуються різні типи сегментів локальної мережі. У перелік функцій, що виконуються комутатором локальної мережі, входять забезпечення крізної комутації, наявність засобів маршрутизації, підтримка простого протоколу управління мережею, імітація моста або маршрутизатора, організація віртуальних мереж, швидкісна ретрансляція блоків даних.

3.4 Маршрутизатор

Маршрутизатор (router) - ретрансляційна система, що сполучає дві комунікаційні мережі або їх частини. З'єднання пар комунікаційних мереж здійснюється через маршрутизатори, які здійснюють необхідне перетворення вказаних протоколів. Маршрутизатор працює з декількома каналами, направляючи в який-небудь з них черговий блок даних. Маршрутизатори обмінюються інформацією про зміни структури мереж, трафік і їх стан. Завдяки цьому, вибирається оптимальний маршрут дотримання блоку даних в різних мережах від абонентської системи-відправника до системи-одержувача. Маршрутизатори забезпечують також з'єднання адміністративно незалежних комунікаційних мереж. Маршрутизатором може бути як спеціальний електронний пристрій, так і спеціалізований комп'ютер, підключений до декількох мережевих сегментів за допомогою декількох мережевих карт.

 

 

3.5 Шлюзи

Шлюз (gateway) - ретрансляційна система, що забезпечує взаємодію інформаційних мереж. Шлюз є найбільш складною ретрансляційною системою, що забезпечує взаємодію мереж з різними наборами протоколів. У свою чергу, набори протоколів можуть спиратися на різні типи фізичних засобів з'єднання. У тих випадках, коли з'єднуються інформаційні мережі, то в них частина рівнів може мати одні і ті ж протоколи. Тоді мережі з'єднуються не за допомогою шлюзу, а на основі простіших ретрансляційних систем, наприклад маршрутизаторами і мостами. Необхідність в мережевих шлюзах виникає при об'єднанні двох систем, що мають різну архітектуру. Як шлюз зазвичай використовується виділений комп'ютер, на якому запущено програмне забезпечення шлюзу і проводяться перетворення, що дозволяють взаємодіяти декільком системам в мережі. Іншою функцією шлюзів є перетворення протоколів. Шлюзи складні в установці і налаштуванні. Шлюзи працюють повільніше, ніж маршрутизатори.

Кабелі зв'язку, лінії зв'язку, канали зв'язку

Для організації зв'язку в мережах використовуються наступні поняття:

- кабелі зв'язку;

- лінії зв'язку;

- канали зв'язку.

Кабель зв'язку - це довгомірний виріб електротехнічної промисловості. З кабелів зв'язку і інших елементів (монтаж, кріплення, кожухи і так далі) будують лінії зв'язку. Прокладення лінії усередині будівлі завдання досить серйозне. Довжина ліній зв'язку коливається від десятків метрів до десятків тисяч кілометрів. У будь-яку більш-менш серйозну лінію зв'язку окрім кабелів входять: траншеї, колодязі, муфти, переходи через річки, море і океани, а також грозозащита (так само як і інші види захисту) ліній. Дуже складні охорона, експлуатація, ремонт ліній зв'язку; зміст кабелів зв'язку під надлишковим тиском, профілактика (у сніг, дощ, на вітрі, в траншеї і в колодязі, в річці і на дні моря). Великою складністю є юридичні питання, що включають узгодження прокладення ліній зв'язку, особливо в місті. По вже побудованим лініям організовують канали зв'язку. Причому якщо лінію, як правило, будують і здають відразу усю, то канали зв'язку вводять поступово. Вже по лінії можна дати зв'язок, але таке використання украй дорогих споруд дуже неефективно. Тому застосовують апаратуру каналообразования (чи, як раніше говорили, ущільнення лінії). По кожному електричному ланцюгу, що складається з двох дротів, забезпечують зв'язок не одній парі абонентів (чи комп'ютерів), а сотням або тисячам : по одній коаксіальній парі в міжміському кабелі може бути утворені до 10800 каналів тональної частоти (0,3 - 3,4 КГц) або майже стільки ж цифрових, з пропускною спроможністю 64 Кбит/с.

За наявності кабелів зв'язку створюються лінії зв'язку, а вже по лініях зв'язку створюються канали зв'язку. Лінії зв'язку і канали зв'язку заводяться на вузли зв'язку. Лінії, канали і вузли утворюють первинні мережі зв'язку.

- Можливість легкого розширення мережі. Структурована кабельна система є модульною, тому її легко нарощувати, дозволяючи легко і ціною малих витрат переходити на досконаліше устаткування, що задовольняє зростаючим вимогам до систем комунікацій.

- Забезпечення ефективнішого обслуговування.

 Структурована кабельна  система полегшує обслуговування  і пошук несправностей.

- Надійність. Структурована кабельна система має підвищену надійність, оскільки звичайне виробництво усіх її компонентів і технічний супровід здійснюється однією фірмою-виробником.

3.6 Кабельні системи

Виділяють два великі класи кабелів : електричні і оптичні, які принципово розрізняються за способом передачі по них сигналу.

Відмітна особливість оптоволоконних систем - висока вартість як самого кабелю (в порівнянні з мідним), так і спеціалізованих настановних елементів (розеток, роз'ємів, з'єднувачів і тому подібне). Правда, головний вклад до вартості мережі вносить ціна активного мережевого устаткування для оптоволоконних мереж.

Оптоволоконні мережі застосовуються для горизонтальних високошвидкісних каналів, а також все частіше стали застосовуватися для вертикальних каналів зв'язку (межэтажных з'єднань).

Оптоволоконні кабелі в майбутньому зможуть скласти реальну конкуренцію мідним високочастотним, оскільки вартість виробництва мідних кабелів знижуватися не буде, адже для нього потрібна дуже чиста мідь, запасів якої на землі значно менше, чим кварцевого піску, з якого проводять оптоволокно.

Типи кабелів

Існує декілька різних типів кабелів, використовуваних в сучасних мережах. Нижче приведені найбільш часто використовувані типи кабелів. Безліч різновидів мідних кабелів складають клас електричних кабелів, використовуваних як для прокладення телефонних мереж, так і для інсталяції комп'ютерних мереж. По внутрішній будові розрізняють кабелі на витій парі і коаксіальні кабелі.

Кабель типу "вита пара" (twisted pair)

Витою парою називається кабель, в якому ізольована пара провідників скручена з невеликим числом витків на одиницю довжини. Скручування дротів зменшує електричні перешкоди ззовні при поширенні сигналів по кабелю, а екрановані виті пари ще більш збільшують міру завадозахищеності сигналів.

Кабель типу "вита пара" використовується в багатьох мережевих технологіях.

Кабелі на витій парі підрозділяються на: неекрановані (UTP - Unshielded Twisted Pair) і екрановані мідні кабелі. Останні підрозділяються на два різновиди: з екрануванням кожної пари і загальним екраном (STP - Shielded Twisted Pair) і з одним тільки загальним екраном (FTP - Foiled Twisted Pair). Наявність або відсутність екрану у кабелю зовсім не означає наявності або відсутності захисту передаваних даних, а говорить лише про різні підходи до пригнічення перешкод. Відсутність екрану робить неекрановані кабелі гнучкішими і стійкішими до зламів. Крім того, вони не вимагають дорогого контура заземлення для експлуатації в нормальному режимі, як екрановані. Неекрановані кабелі ідеально підходять для прокладення в приміщеннях усередині офісів, а екрановані краще використовувати для установки в місцях з особливими умовами експлуатації, наприклад, поряд з дуже сильними джерелами електромагнітних випромінювань, яких в офісах зазвичай немає.

 

Основою для віднесення кабелю до однієї з категорій служить максимальна частота передаваного по ньому сигналу.

Коаксіальні кабелі використовуються в радіо і телевізійній апаратурі. Коаксіальні кабелі можуть передавати дані із швидкістю 10 Мбіт/з на максимальну відстань від 185 до 500 метрів. Вони розділяються на товстих і тонких залежно від товщини. Типи коаксіальних кабелів приведені в таблиці:

 

 

Кабель Thinnet, відомий як кабель RG, - 58, є найбільш широко використовуваним фізичним носієм даних. Мережі при цьому не вимагають додаткового устаткування і є простими і недорогими. Хоча тонкий коаксіальний кабель (Thin Ethernet) дозволяє передачу на меншу відстань, чим товстий, але для з'єднань з тонким кабелем застосовуються стандартні байонетные роз'єми BNC типу СР- 50 і зважаючи на його невелику вартість він стає фактично стандартним для офісних мереж.

Товстий коаксіальний кабель (Thick Ethernet) має велику міру завадозахищеності, велику механічну міцність, але вимагає спеціального пристосування для проколювання кабелю, щоб створити відгалуження для підключення до ЛВС. Він дорожчий і менш гнучкіший, чим тонкий.

Оптоволоконний кабель

Оптоволоконний кабель (Fiber Optic Cable) забезпечує високу швидкість передачі даних на великій відстані. Вони також несприйнятливі до інтерференції і підслуховування. У оптоволоконному кабелі для передачі сигналів використовується світло. Волокно, вживане як світлопровід, дозволяє передачу сигналів на великі відстані з величезною швидкістю, але воно дороге, і з ним важко працювати.

Для установки роз'ємів, створення відгалужень, пошуку несправностей в оптоволоконному кабелі потрібні спеціальні пристосування і висока кваліфікація. Оптоволоконний кабель складається з центральної скляної нитки завтовшки в декілька мікрон, покритою суцільною скляною оболонкою. Усе це, у свою чергу, заховано в зовнішню захисну оболонку.

Оптоволоконні лінії дуже чутливі до поганих з'єднань в роз'ємах. Як джерело світла в таких кабелях застосовуються світлодіоди (LED - Light Emitting Diode), а інформація кодується шляхом зміни інтенсивності світла. На приймальному кінці кабелю детектор перетворить світлові імпульси в електричні сигнали.

Існують два типи оптоволоконних кабелів - одномодові і багатомодові. Одномодові кабелі мають менший діаметр, велику вартість і дозволяють передачу інформації на великі відстані. Оскільки світлові імпульси можуть рухатися в одному напрямі, системи на базі оптоволоконних кабелів повинні мати кабель, що входить, і витікаючий кабель для кожного сегменту. Оптоволоконний кабель

вимагає спеціальних коннекторів і висококваліфікованої установки.

3.7 Безпровідні технології

Методи безпровідної технології передачі даних є зручним, а іноді незамінним засобом зв'язку. Безпровідні технології розрізняються по типах сигналу, частоті (велика частота означає велику швидкість передачі) і відстані передачі. Велике значення мають перешкоди і вартість. Можна виділити три основні типи безпровідної технології :

- радіозв'язок;

- зв'язок в мікрохвильовому діапазоні;

- інфрачервоний зв'язок.

Радіозв'язок

Технології радіозв'язку пересилають дані на радіочастотах і практично не мають обмежень по дальності. Вона використовується для з'єднання локальних мереж на великих географічних відстанях. Радіопередача в цілому має високу вартість і чутлива до електронного і атмосферного накладення, а також схильна до перехоплень, тому вимагає шифрування для забезпечення рівня безпеки.

Зв'язок в мікрохвильовому діапазоні

Передача даних в мікрохвильовому діапазоні (Microwaves) використовує високі частоти і застосовується як на коротких, так і на великих відстанях. Головне обмеження полягає в тому, щоб передавач і приймач були в зоні прямої видимості. Використовується в місцях, де використання фізичного носія ускладнене. Передача даних в мікрохвильовому діапазоні при використанні супутників може бути дуже дорогою.

Інфрачервоний зв'язок

Інфрачервоні технології (Infrared transmission), функціонують на дуже високих частотах, що наближаються до частот видимого світла. Вони можуть бути використані для встановлення двосторонньої або широкомовної передачі на близьких відстанях. При інфрачервоному зв'язку зазвичай використовують світлодіоди (LED - Light Emitting Diode) для передачі інфрачервоних хвиль приймачу. Інфрачервона передача обмежена малою відстанню в прямій зоні видимості і може бути використана в офісних будівлях.

 

 

 

 

 

 

ВИСНОВКИ

Класифікуючи мережі по територіальній ознаці, розрізнюють локальні (LAN), глобальні (WAN) і міські (MAN) мережі .  
LAN зосереджені на території не більше за 1-2 км; побудовані з використанням дорогих високоякісних ліній зв'язку, які дозволяють, застосовуючи прості методи передачі даних, досягати високих швидкостей обміну даними порядку 100 Мбіт/с. Послуги, що надаються відрізняються широкою різноманітністю і звичайно передбачають реалізацію в режимі on-line.  
WAN об'єднують комп'ютери, що розосередилися на відстані сотень і тисяч кілометрів. Часто використовуються вже існуючі не дуже якісні лінії зв'язку. Більш низькі, ніж в локальних мережах, швидкості передачі даних (десятки кілобіт в секунду) обмежують набір послуг, що надаються передачею файлів, переважно не в оперативному, а в фоновому режимі, з використанням електронної пошти. Для стійкої передачі дискретних даних застосовуються більш складні методи і обладнання, чим в локальних мережах.  
MAN займають проміжне положення між локальними і глобальними мережами. При досить великих відстанях між вузлами (десятки кілометрів) вони володіють якісними лініями зв'язку і високими швидкостями обміну, іноді навіть більш високими, ніж в класичних локальних мережах. Як і у разі локальних мереж, при побудові MAN вже існуючі лінії зв'язку не використовуються, а прокладаються наново.

 

 

 

 

 

 

 

Список використаної літератури

1. Бождай А.С., Финогеев  А.Г. Сетевые технологии. Часть 1: Учеб. пособие. — Пенза: Изд-во Пенз. гос. ун-та, 2005 — 107 с.: ил.  
2. Компьютерные сети. Учебный курс / Пер. с англ. М.: Издательский отдел «Русская Редакция» ТОО «Channel Trading Ltd.», 1997. — 696 с.  
3. Нанс Б. Компьютерные сети: Пер. с англ. М.: «БИНОМ», 1996. — 248 с.  
4. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для ВУЗов. 3-е издание. — СПб.: Питер, 2007. — 960 с.  
5. Хамбракен Д. Компьютерные сети: Пер. с англ. М.: ДМК Пресс, 2004. — 448 с.

Информация о работе Апаратна складова локально-обчислювальних мереж