Углеводный обмен

Автор работы: Пользователь скрыл имя, 16 Января 2014 в 14:24, реферат

Краткое описание

Углеводный обмен или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
Синтез и распад гликогена в тканях (гликогенез и гликогенолиз), прежде всего в печени.

Прикрепленные файлы: 1 файл

Углеводный обмен.docx

— 271.33 Кб (Скачать документ)

При высоком уровне АТФ снижается скорость цикла  лимонной кислоты и дыхательной  цепи. В этих условиях процесс гликолиза  также замедляется. Следует напомнить, что аллостерическая регуляция ферментов ОПК и дыхательной цепи также связана с изменением концентрации таких ключевых продуктов, как НАДН, АТФ и некоторых метаболитов. Так, НАДН накапливаясь в том случае, если не успевает окислиться в дыхательной цепи, ингибирует некоторые аллостерические ферменты цитратного цикла.

Физиологическая роль гликолиза в печени и жировой  ткани несколько иная, чем в  других тканях. В печени и жировой ткани гликолиз в период пищеварения функционирует в основном как источник субстратов для синтеза жиров. Регуляция гликолиза в печени имеет свои особенности и будет рассмотрена ниже.

Бифосфоглицератный цикл

В эритроцитах многих млекопитающих имеется фермент, позволяющий направить процесс в обход стадии, катализируемой фосфоглицераткиназой; при этом свободная энергия, обусловленная присутствием высокоэнергетического фосфата в молекуле бисфосфоглицерата[1,3-], рассеивается в форме теплоты. В большинстве тканей 2,3-БФГ образуется в небольших количествах. Дополнительный фермент бисфосфоглицератмутаза катализирует превращение 1,3-бисфосфоглицерата в бисфосфоглицерат[2,3-], последний далее превращается в фосфоглицерат[3-] (принято считать, что этой активностью обладает фосфоглицератмутаза). Потеря на этой стадии высокоэнергетического фосфата означает, что процесс гликолиза более не сопровождается производством АТФ. В этом может заключаться определенное преимущество, поскольку даже в тех случаях, когда потребности в ATФ минимальны, гликолиз может продолжаться. Образующийся 2,3-бисфосфоглицерат связывается с гемоглобином, понижая сродство последнего к кислороду то есть сдвигает кривую диссоциации оксигемоглобина вправо. Таким образом, присутствие 2,3-дифосфоглицерата в эритроцитах способствует диссоциации кислорода из оксигемоглобина и переходу его в ткани.

Брожения

Брожение (тж. сбраживание, ферментация) — «это такой метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода»[2]. Брожение — это анаэробный (происходящий без участия кислорода) метаболический распад молекул питательных веществ, например глюкозы. По выражению Луи Пастера, «брожение — это жизнь без кислорода». Большинство типов брожения осуществляют микроорганизмы — облигатные или факультативные анаэробы.

Эдуард Бухнер был удостоен в 1907 году Нобелевской премии по химии за открытие внеклеточного брожения.

Брожение не высвобождает всю имеющуюся в молекуле энергию, поэтому промежуточные продукты брожения могут использоваться в  ходе клеточного дыхания.

  • Термин брожение также используется в более широком смысле, для обозначения бурного роста микроорганизмов в соответствующей среде. При использовании в этом смысле не делается различия между аэробным и анаэробным метаболизмом.

Брожение часто  используется для приготовления  или сохранения пищи. Говоря о брожении, обычно имеют в виду брожение сахара (превращение его в спирт) с  использованием дрожжей, но, к примеру, при производстве йогурта используются другие виды брожения.

Использование брожения человеком обычно предполагает применение определенных видов и штаммов  микроорганизмов. Вина иногда улучшают с использованием процесса взаимного  брожения.

Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем  этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается  энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе  регенерируется никотинамидадениндинуклеотид (НАД+), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на НАД+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав НАДН; в ходе регенерации НАД+ они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются  отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму  в отсутствие кислорода (или других высоко-окисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания). Однако даже у позвоночных брожение (анаэробное окисление глюкозы) используется как эффективный способ получения энергии во время коротких периодов интенсивной мышечной работы, когда перенос кислорода к мышцам недостаточен для поддержания аэробного метаболизма. Брожение у позвоночных помогает во время коротких периодов интенсивной работы, но не предназначено для длительного использования. Например, у людей гликолиз с образованием молочной кислоты дает энергию на период от 30 секунд до 2 минут. Скорость генерации АТФ примерно в 100 раз больше, чем при окислительном фосфорилировании. Уровень pH в цитоплазме быстро падает, когда в мышце накапливается молочная кислота, в конечном итоге ингибируя ферменты, вовлеченные в процесс гликолиза.

Спиртовое брожение

Спиртовое брожение осуществляется за счет т. н. дрожжеподобными организмами, а также некоторыми плесневыми грибками и бактериями. Суммарную реакцию спиртового брожения можно изобразить следующим образом:

в результате которой, одна молекула глюкозы преобразуется  в 2 молекулы этанола и в 2 молекулы углекислого газа и сопровождается запасанием энергии в виде АТФ.

Механизм реакции  спиртового брожения чрезвычайно близок к гликолизу. Расхождение начинается лишь после этапа образования пирувата. При гликолизе пируват при участии фермента ЛДГ и кофермента НАДН восстанавливается в лактат. При спиртовом брожении этот конечный этап заменен двумя другими ферментативными реакциями — пируватдекарбоксилазной и алкогольдегидрогеназной.

В дрожжевых клетках  пируват вначале подвергается декарбоксилированию, в результате чего образуется ацетальдегид. Данная реакция катализируется ферментом пируваткарбоксилазой (последняя отсутствует в тканях животных), который требует наличие ионов Mg2+ и кофермента — триаминпирофосфата (ТПФ).

Реакция необратимая.

Образовавшийся  ацетальдегид присоединяет к себе водород, отщепляемый от НАДН, восстанавливаясь при этом в этанол. Реакция катализируется ферментом алкогольдегидрогеназой:

Таким образом, конечным продуктом спиртового брожения являются этанол и CO2, а не молочная кислота, как при гликолизе.

Молочнокислое брожение

Молочнокислое брожение — процесс анаэробного окисления углеводов, конечным продуктом при котором выступает молочная кислота.

Гомоферментативные  бактерии (например, Lactobacillus delbruekii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением[3]:

C6H12O6 = 2CH3CHOH-COOH

Название получило по характерному продукту — молочной кислоте. Для молочнокислых бактерий является основным путем катаболизма углеводов и основным источником энергии в виде АТФ. Также молочнокислое брожение происходит в тканях животных в отсутствие кислорода при больших нагрузках.

Маслянокислое брожение

Маслянокислое брожение — брожение глюкозы, в ходе которого образуется масляная кислота C3H7COOH. Оно протекает по уравнению:

С6Н12О6 = С3Н7СООН + 2СО2↑ + 2Н2↑ + 20 ккал

При этом водород и углекислота являются побочными продуктами. В качестве побочных продуктов при этом также получаются этиловый и бутиловый спирты, уксусная кислота и др[4]. Маслянокислое брожение — результат деятельности анаэробных бактерий, в том числе рода Клостридиум. Как следует из названия, такое брожение связано с прогорканием жиров.

Лимоннокислое брожение

Лимоннокислым брожением  называется окисление глюкозы грибами в лимонную кислоту. Конечный результат брожения можно представить следующим суммарным уравнением:

6Н12O6 + 3O2 = 2С6Н8O7 + 4Н2O

Химизм образования  лимонной кислоты из сахара до настоящего времени окончательно не установлен. Большинство исследователей считает, что это брожение до образования пировиноградной кислоты протекает, как и другие брожения. Далее превращение пировиноградной кислоты в лимонную через ряд кислот (уксусную, янтарную, фумаровую, яблочную, щавелево-уксусную) сходно с превращениями в цикле Кребса[5].

Ацетоно-бутиловое брожение

Ацетоно-бутиловое  брожение близко к масляному, однако при этом брожении образуется значительно больше бутилового спирта и ацетона:

2C6H12O6 = C4H9OH + CH3COCH3 + 4H2↑ + 5CO2

Кроме того, в процессе ацетоно-бутилового брожения накапливаются этиловый спирт, масляная и уксусная кислоты, выделяются углекислый газ и водород. Химизм ацетоно-бутилового брожения сходен с маслянокислым брожением. Первые стадии — до образования ацетальдоля — аналогичны стадиям маслянокислого брожения[6].

Фруктоза и другие углеводы в процессе гликолиза

Установлено, что фруктоза, присутствующая в свободном виде во многих фруктах и образующаяся в тонком кишечнике из сахарозы, всасываясь в тканях, может подвергаться фосфорилированию во фруктозо-6-фосфат при участии фермента гексокиназы и АТФ.

Эта реакция ингибируется глюкозой. Образовавшийся фруктозо-6-фосфат либо превращается в глюкозу через стадии образования глюкозо-6-фосфата и последующего отщепления фосфорной кислоты, либо подвергатеся дальнейшим преобразованиям. Из фруктозо-6-фосфата под влиянием 6-фосфофруктокиназы и АТФ образуется фруктозо-1,6-дифосфат:

Далее фруктозо-1,6-дифосфат может подвергаться дальнейшим превращениям по пути гликолиза. Таков главный путь включения фруктозы в метаболизм мышечной ткани, почек, жировой ткани.

В печени, однако, для  этого существует другой путь. Присутствующая в ней фруктокиназа катализирует фосфорилирование фруктозы не по 6-му, а по 1-му атому углерода:

В отличие от 1-ой реакции, эта реакция не блокируется глюкозой. Затем под действием кетозо-1-фосфатальдолазы образовавшийся фруктозо-1-фосфат расщепляется с образованием D-глицеральдегида и дигидроксиацетонфосфата:

Галактоза в процессе гликолиза

Основным источником галактозы является лактоза пищи, которая в пищеварительном тракте расщепляется до галактозы и глюкозы. Обмен галактозы начинается с  превращения её в галактозо-1-фосфат. Эта реакция катализируется галактокиназой с участием АТФ:

В следующей реакции  в присутствии УДФ-глюкозы фермент  гексозо-1-фосфатуридилилтрансфераза  катализирует превращение галактозо-1-фосфата  в глюкозо-1-фосфат, одновременно образуется уридиндифосфатгалактоза (УДФ-галактоза).

Нарушения метаболизма фруктозы

Нарушения метаболизма  фруктозы, причиной которых является дефект ферментов, отражены в таблице

Неактивный фермент

Блокируемая реакция

Локализация фермента

Клинические проявления и лабораторные данные

Фруктокиназа

Фруктоза + АТФ → Фруктозо-1-фосфат + АДФ

Печень, почки, энтероциты

Фруктоземия, фруктозурия

Фруктозо-1-фосфатальдолаза

Фруктозо-1-фосфат → Дигидроксиацетон-3 -фосфат + Глицеральдегид

Печень

Рвота, боли в животе, диарея, гипогликемия, гипофосфатемия, фруктоземия, гиперурикемия, хроническая недостаточность функций печени, почек.


Недостаточность фруктокиназы клинически не проявляется. Фруктоза накапливается  в крови и выделяется с мочой, где её можно обнаружить лабораторными  методами. Очень важно не перепутать эту безвредную аномалию с сахарным диабетом. Данное заболевание известно как доброкачественная эссенциальная фруктозурия и встречается с частотой 1:130 000.

Наследственная  непереносимость фруктозы, возникающая при генетически обусловленном дефекте фруктозо-1-фосфатальдолазы, не проявляется, пока ребёнок питается грудным молоком, то есть пока пища не содержит фруктозы. Симптомы возникают, когда в рацион добавляют фрукты, соки, сахарозу. Рвота, боли в животе, диарея, гипогликемия и даже кома и судороги возникают через 30 мин после приёма пищи, содержащей фруктозу. У маленьких детей и подростков, продолжающих принимать фруктозу, развиваются хронические нарушения функций печени и почек. Непереносимость фруктозы — достаточно частая аутосомно-рецессивная форма патологии.

Дефект альдолазы  фруктозо-1-фосфата сопровождается накоплением фруктозо-1-фосфата, который  ингибирует активность фосфоглюкомутазы, превращающей глюкозо-1-фосфат в глюкозо-6-фосфат и обеспечивающей включение продукта гликогенфосфорилазной реакции в метаболизм. Поэтому происходит торможение распада гликогена на стадии образования глюкозо-1-фосфата, в результате чего развивается гипогликемия. Как следствие, ускоряется мобилизация липидов и окисление жирных кислот. Следствием ускорения окисления жирных кислот и синтеза кетоновых тел, замещающих энергетическую функцию глюкозы, может быть метаболический ацидоз, так как кетоновые тела являются кислотами и при высоких концентрациях снижают рН крови.

Информация о работе Углеводный обмен