Термодинамиканың бiрiншi заңы

Автор работы: Пользователь скрыл имя, 21 Ноября 2014 в 08:29, реферат

Краткое описание

Термодинамикалық түсініктер мен анықтамалар. Термодинамика денелер энергиясыньщ бір-біріне жылу мен жұмыс түрінде өзгеруін, айналуын зерттейді. Қоршаған ортадағы энергияның осылай алмасуы термодинамикада сандық сипаттама ретінде қарастырылады. Жылу, электрон, атом, молекула сияқты бөлшектердің ретсіз қозғалысын, яғни олардың кинетикалық энергиясының жылу түріндегі энергиямен алмасуын, ал жұмыс — сол бөлшектердің реттелген қозғалысын кинетикалық энергия түрінде сипаттайды.

Содержание

Термодинамикалық түсініктер мен анықтамалар.
Ішкі энергия
Энтальпия
Термодинамиканың бірінші заңы
Идеал газдың ұлғаю жұмысы.
Изобаралық процесте
Изотермалық процесте
Изохоралық процесте
Адиабаталық процесте

Прикрепленные файлы: 1 файл

ТЕРМОДИНАМИКАНЫҢ БІРІНШІ ЗАҢЫ.docx

— 37.49 Кб (Скачать документ)

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ             МИНИСТРЛІГІ

Е.А.БӨКЕТОВ АТЫНДАҒЫ ҚАРАҒАНДЫ МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ

 

Химия факультеті

Химиялық технология және экология кафедрасы

 

 

 

 

 

 

 

 

РЕФЕРАТ

 

ТАҚЫРЫБЫ:

Термодинамиканың бiрiншi заңы

 

 

 

 

 

 

 

 

 

 

Орындаған: ХТНВ-41 тобының

студенті Әбдіқас Ш.М.

Қабылдаған: Кутжанова

 

 

 

 

 

 

 

ҚАРАҒАНДЫ 2014

Жоспары:

  1. Термодинамикалық түсініктер мен анықтамалар.
  2. Ішкі энергия
  3. Энтальпия
  4. Термодинамиканың бірінші заңы
  5. Идеал газдың ұлғаю жұмысы. 
  6. Изобаралық процесте 
  7. Изотермалық процесте 
  8. Изохоралық процесте 
  9. Адиабаталық процесте

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Термодинамикалық түсініктер мен анықтамалар. Термодинамика денелер энергиясыньщ бір-біріне жылу мен жұмыс түрінде өзгеруін, айналуын зерттейді. Қоршаған ортадағы энергияның осылай алмасуы термодинамикада сандық сипаттама ретінде қарастырылады. Жылу, электрон, атом, молекула сияқты бөлшектердің ретсіз қозғалысын, яғни олардың кинетикалық энергиясының жылу түріндегі энергиямен алмасуын, ал жұмыс — сол бөлшектердің реттелген қозғалысын кинетикалық энергия түрінде сипаттайды.

Термодинамика негізінен термодинамиканың бірінші және екінші заңдары деп аталатын екі заңдылыққа сүйенеді. Олардың екеуі де өмірдегі, өндірістегі тәжірибелерді жинақтап, қорытып, тұжырымдаудан пайда болған. Термодинамика мынадай тараулардан тұрады: энергияның бір түрден екіншіге түрленуіндегі жалпы заңдылықты зерттейтін жалпы немесе физикалық термоди-намика, жылу машиналарындағы жылу мен механикалық жұмыстың өзара айналуын, яғни жылудын, жұмысқа, жұмыстьщ жылуға ауысуын қарастыратын техникалық термодинамика, химиялық ре-акция, еру, кристалдану, адсорбция сияқты процестердегі энергия түрлерінің өзара алмасуын, айналуын анықтап, есептейтін химиялық термодинамика. Сол сияқты, химиялық термодинамика тек химиялық және басқа да энергиялардағы ара қатынасты зерттеп қана қоймай, белгілі жағдайдағы химиялық процестердің мүмкіндігі мен өздігінен жүру шегін айқындайды. Ендеше, химиялық термодинамика химиялық өндіріс пен технологиялык процестер негізі болып саналатын физикалық-химиялық құбылыстарды нақты түсініп, сауатты есептеп, ұтымды басқаруға көмектеседі.

Термодинамикалық әдістегі есептеулерді қолдану өндірістің барлық салаларына өз ықпалын тигізіп, оларды жаңа сатыға кө-терді. Ал, қазіргі кезде термодинамикалық әдіс металлургиялық процестерде, пластикалық масса (пластмасса), тыңайтқыш, химиялық талшық өндірісінде, отынды химиялық әдіспен өңдеуде кеңінен қолданылуда. Әсіресе, соңғы жылдары биологиялық тер-модинамиканың шапшаң дамуына байланысты, өсімдік пен жану-ар организмдеріндегі биохимиялық процестерге де термодинами-калық есептеу әдістері қолданылуда.

Термодинамика сондай-ақ, классикалық және статистикалық болып та бөлінеді. Классикалық (дәстүрлі) термодинамика жекеленген атом, молекула сияқты бөлшектерді емес, бу машиналарының, іштен жанатын двигательдердің жүмыс істеу ерекшеліктерін, сұйықты қайнатып айдау, кристалдану, электролиз сияқты микроскопиялық жүйелерді зерттейді. Ал статистикалық термодинамика кейін пайда болса да, термодинамика ілімін едәуір дамытып, жаңа сатыға көтерді. Статистикалық термодинамика жекеленген атом, молекула секілді бөлшектерді қарастырады, олардын, біріккен сипаты мен қасиеттерін айқындайды. Термодинамиканың бүл екі саласын білу болашақ химик, биолог, технологтардың кәсіби ма-мандықтарының деңгейін жаңа сапаға көтереді.

Системаның күйі көлем, қысым, температура, масса, химиялық құрам сияқты параметрлермен және химиялық қасиеттердің жиынтығымен сипатталады. Мұнымен қатар система күйін көрсететін бірнеше теңдеулер де бар. Система күйін анықтау үшін көрсетілген өлшемдердің бәрін білу шарт емес, өйткені олар теңдеу құра-мына енгендіктен, бірін-бірі толықтырады және өзара байланысты болады. Система күйін анықтау үшін таңдалып алынған бірнеше тәуелсіз ауыспалы шамадағы қасиет көрсеткішін күй параметрле-рі (өлшемі) дейді. Оларды белгілі бір жағдайда өтетін процеске орай таңдайды. Мәселен, газ күйін сипаттау үшін оның қысымы, көлемі және температурасы сияқты үш өлшемнің екеуін алсақ жеткілікті, себебі қалғаны осыларға әр уақытта да тәуелді болады.

Система күйіндегі параметрлердің кез келген өзгерісі процесс деп аталады. Оқулықта жиі кездесетін процестердің кейбір түрлері мыналар:

1. Изотермалық процесс (T = сопst). 2.Изобаралық процесс (р = сопst)

3. Изохоралық процесс (V=сопst)

4. Адиабаталық процесс (Q = 0)

5. Изобара-изотермалық процесс (р = сопst T=сопst )

6. Изохора-изотермалық процесс (V = сопst T=сопst).

20

Система күйінің біраз параметрлері процесс нәтижесінде өзгеріп, соңында өздерінің бастапқы мәнше қайта оралса, онда мұндай процестерді тұйық процестер деп атайды.

Егер системада энергия немесе зат алмасу болмаса және онын, қасиеті уақыт өткен сайын өзгермесе, онда мұндай системаның күйін күй теңдігі дейді. Әйтсе де, ортадан тепкіш күштің, электр-лік және басқа сыртқы әсер ету күштерінің өрісіндегі системаның тепе-теңдік кезіндегі интенсивті қасиеттері бір нүктеден екінші нүктеге ауыса алады, яғни өзгереді, бұл өзгерістерді ескермеуге де болады. Системаның тепе-теңдік күйін уақыт өткен сайын қасиеті өзгеріссіз қалатын тұрақты күйден ажырата білу қажет.

Ішкі энергия. Ішкі энергия (U) системаның жалпы энергия қорын сипаттайды. Оның құрамына системаны құрайтын электрондардын, ядролардың, атомдардың, молекулалардың, бөлшектердің өзара әрекеті мен қозғалыстарындағы энергияның барлық түрлері енеді. Әйтсе де ішкі энергияға сыртқы күш өрісіндегі потенциалдык, энергия мен системадағы кинетикалық энергия4 енбейді. Оның абсолюттік мәнін ең қарапайым система үшін де анықтау мүмкін емес және термодинамика мақсаты үшін ол керек емес. Система бір күйден екіншіге ауысқан кездегі оның ішкі энергия өзгерісінің мәнін табу маңыздыU=U2-U1 Қарастырылып отырған процестегі системаның ішкі энергиясы көбейсе (артса), онда U оң, азайса теріс болады.

Система өзін қоршаған ортамен әрекеттескенде пайда болатын құбылысты жұмыс дейді. Осындай жүмыс нәтижесінде системаның тепе-теңдігін бұзған сыртқы күш жойылады. Сонымен жұмыс дегеніміз энергияны берудің макроскопиялық түрі екен. Олай болса, жұмыс жүргізілуі үшін сыртқы күштің болуы шарт. Енді осы ойды түсіндіру мақсатымен, газ көлемінің ұлғаюы кезіндегі жұмысты қарастырайық (3-сурет). р\ бастапқы қысым — және V2 көлемі басым. Цилиндрдің 1және 2 нүктесінде поршеньді ұстап тұратын шектеуіштер орнатылған делік (3, а-сурет). Поршеньге сырттан қысым түсірілсін, ол поршень астындағы, яғни цилиндр ішіндегі әуелгі қысымнан р1 аз болсын: р2<р1. Егер 1-шектеуішті босатсақ, онда газдың көлемі ұлғайып, кысымның көлем өзгерісіне көбейтіндісіне тең шамадағы жұмыс атқарылады: A = р2- (V2^ — V1) = р2=0 (3, б-сурет). Поршеньнің сыртқы қысымы рА азайған сайын, газ көлемінің ұлғаюы кезінде атқарылатын жұмыс шамасы да азаяды және р2 = 0 болса, А = 0. Ал, сыртқы қысым ішкі қысымнан шексіз аз мелшердегі қысымға ғана артық болса, онда ең көп жұмыс атқарылады, оны максималды жұмыс дейді.

Жылу дегеніміз бір-біріне түйіскен денелердегі молекулаларың өзара соқтығысу (қақтығысу) арқылы, яғни система ішінде жылу алмасу жолымен энергияны беру, жеткізу түрі. Ал жылу алмасу — макроскопиялық не ретсіз қозғалыстағы бөлшектердің энергияны беру түрі. Жылудын, бағытын және өзара берілуін, қозғалысын температура көрсетеді.

Жұмыс (А) пен жылу (Q) ішкі знергия (V) сияқты системалардын қасиетін көрсетпейді, олар тек энер-гияны бір системадан екіншіге жеткізеді. Жылуды беру немесе жұмысты атқару үшін система өзін қоршаған ортамен не басқа системалармен әрекеттесуі кажет. Қоршаған ортадан не басқа системадан жылу алса, жылуды және осы кездегі система атқарған жұмысты оң, ал кері жағдайда теріс дейді.

Энтальпия. Қөптеген процестерді термодинамикалық тұрғыдан қарастырғанда ішкі энергиямен қатар функциясы да жиі кездеседі. Мұндағы р — система қысымы; 1/— система көлемі. Осы теңдеудің оң жағындағы көбейтіндіні (рҮ) системадағы потенциалды энергиямен тедестіруге болады. Энталь-пияны “системадағы кеңейтілген энергия” немесе “жылу ұстағыш-тық” деп те айтады. Энтальпия да ішкі энергия сияқты система күйінің функциясы және оның процестер кезіндегі өзгеруі. Ол процестердің қалай, қандай жолмен өткеніне тәуелді емес, тек систе-маның бастапқы және соңғы күйіне байланысты. Энтальпияның абсолюттік мәнін анықтау мумкін емес. Өйткені оны өрнектейтін термодинамикалық теңдеу белгісіз және табуға мүмкіндік жок.

Энтальпия терминін 1909 жылы Оннес енгізген, ол гректід “эн”— ішкі және “тальпэ”— жылу деген сөздерінен алынған.

Термодинамиканың бірінші заңы. Термодинамиканың бірінші заңы (кейде оны термодинамиканың бірінші бастамасы дейді) негізінен энергияның сақталу және оның жылу процестеріне түр-лену (айналу) заңы болып есептеледі. Демек, ол жылу мен жұ-мыстың өзгеруіне байланысты. Ал, энергияның сақталу заңы ғы-лымға көптен белгілі. Өйткені табиғаттың осы заңдылығы макросистемалардағы процестерге де, молекула саны аз қатынаса-тын өте кішкене системаларға да қолданылады. Ол, әуелі механи-кадағы жылу мен жүмыс арасындағы қатынастарды зерттеп, анықтау кезінде қалыптасып, бертін магниттік және электрлік энергиялардың байланысын түсіндіру үшін электрлік теорияда қолданылды. Осы айтылған екі жағдайда да жылу алмасу қарас-тырылмай, тек энергияның бір формадан екінші формаға ауысуы ғана алынған.

Макроскопиялық системалардағы энергияның өзгеруі тәжірибе көрсетіп отырғандай жылу алмасу формасында байқалады және сан түрлі жұмыс түрінде кездеседі. Көптеген әдістер арқылы бір күйден екінші күйге ауысқан жылу мен жұмыстың алгебралык. қосындысы өздерінін, тұрақты мәнін сактайды, ал процестерде ол нөлге тең. Жүргізілетін тәжірибелер нәтижесінен, термодинамика-ның бірінші заңы сипаттауды, дәлелдеуді керек етпейтін жорамал (постулат) екенін көреміз. Осыған сүйеніп системадағы ішкі энергияның қосындысы тек система күйіне ғана тәуелді функция екенін аламыз. Мысалы, жабық системаға белгілі мелшердегі жылу (Q) жібеірілді делік. Бүл жылу жалпы жағдайдағы системаның Ішкі энергиясын (U) көбейтуге және сол системанын, істеген жұмысына кетеді. Демек, термодинамиканың бірінші занын былай тұжырымдауга болады

Кез келген процестердігі системаның ішқі энергия өсімшесі, осы системаға берілген жылу мөлшерінен система аткарған жұмысты азайтканға тен:

U=Q-A

Бұдан ішкі энергияның өзгеруі процестерді қалай, қандай жолмен жүргізгенге байланысты емес, системаның бастапқы және соңғы күйіне тәуелді екенін көреміз. Бұл, ішкі энергияның система күйінің функциясы екенін дәлелдейді. Егер функцияның мәні күй параметріне ғана байланысты болып, процестің бұрынғы күйімен анықталмаса, онда ол функцияны күй параметріне функциялы деп те айтады. Жылу мен жұмыс мұндай қасиет көрсетпейді, олар система күйінің функциясы емес және процестердщ қалай, қандай жолмен жүргізілгеніне тәуелді. Осы айтылғандарды нақтылай түсу үшін, термодинамиканьщ бірінші заңының дифференциалдық түрін математикалық өрнекпен көрсетейік:

dU=bQ-bA

термодинамиканың бірінші заңының аналитикалық мәні. Оларды өткен ғасырдың ортасында, бір-бірінен тәуелсіз әуелі Р. Майер, сосын Д. Джоуль ашқан. Алғашында бұл теңдеулер тек механикалық жұмыстарды сипаттауға ғана қолданылған. Бертін келе Г. Гельмгольц оларды жалпы түрге ауыстырды. Бұл теңдеулердегі А кез келген жұмыс түрін көрсетеді. Ал, жалпы жұмыс мөлшері системаға әсер еткен күштердің қосындысының жүргізілген жұмыс жолына көбейтіндісіне тең. Газ өз көлемінің ұлғаюы кезіндегі жұмыстар жиірек қарастырылады.

МұндайдаbA=pdY және А=Spdv  Осы жағдайда термодинамиканың бірінші заңын былайша өрнектеуге болады: (dU=Q-S= (2 —| немесе dU=dQ-pdY. Енді осы өрнекті басқа жұмыс түрлеріне қолданайық:

а) р жүгін dh биіктігіне көтергенде:

bA=pdh-mgdhмұндағы m-масса, g-еркін тусу үдеуі.

Іен жүргізгенге байланысты емес, системаның бастапқы және оңғы күйіне тәуелді екенін көреміз. Бұл, ішкі энергияның система күйінің функциясы екенін дәлелдейді. Егер функцияның мән күй параметріне ғана байланысты болып, процестің бұрынғы күйі Іен анықталмаса, онда ол функцияны күй параметріне функциялды деп те айтады. Жылу мен жұмыс мұндай қасиет көрсетпейді, олар система күйінің функциясы емес және процестерді қалай, қандай шамамен жүргізілгеніне тәуелді. Олай болса, термодинамиканың бірінші заңы ашық системалар үшін.

Идеал газдың ұлғаю жұмысы. Менделеев-Клапейрон теңдеуі-мен күйін өрнектеуге болатын газды идеал газ дейді. Ол ішкі энер-гиясы температураға тәуелді, қысым мен көлемге тәуелсіз газдар туралы тұжырымдалған Гей-Люссак-Джоуль заңына бағынады. Қысым мен көлем ішкі энергияға ешбір өзгеріс енгізбесе, онда жұмыс газдың ұлғаюы кезінде ғана жүреді. Оны бұл топтағы газдармен тығыз байланысы бар кейбір қүбылыстарға арнап, тер-модинамиканың бірінші заңымен ұштастырып, қолдануға болады.

Гей-Люссак-Джоуль заңы тәжірибе негізінде тұжырымдалса да, оны теориялық тұрғыдан қарастырып, термодинамиканың екш-ші заңы арқылы дәлелдеуге болады. 1809 жылы Гей-Люссак және 1844 жылы Джоуль көптеген тәжірибе жүргізді. Олардың қысқа-ша мазмұны мынадай: Шүмегі бар түтік арқылы жалғасқан екі баллон су құйылған ыдыс ішіне орналасқан. Судың температура-сы термометрмен өлшенеді. Баллонның біреуініқ ішіндегі газдың қысымы р\, ал екіншісі бос, демек р2 = 0- Егер шүмекті ашсак. газ бос баллонға ауысады. Осы сәтте бірінші баллон салқындаса, екінші баллон жылынады. Ал газ қысьмы теңелген соң, судың температурасы өзінің тәжірибеге дейінгі мәніне қайта келеді. Ендеше, екеуіндегі қысым да, көлем де бірдей, мұндайда ешбір жұмыс іс ітелмейді, ягни олардьщ ішкі энергиясы да, жұмыс та нөлге тең. Бұл айтылғандардың бәрі термодинамиканың бірінші заңымен толық үндестік табады.

Енді көлденең қимасының ауданы 5 болатын цилиндр ішінде жүретін газдын қайтымды ұлғаюын қарастырайық (5-сурет). Мұн-дағы система қарсы жұмыс істейтін сыртқы қысымды р, поршень-нің шексіз кішкене биіктікке жылжуын dh арқылы белгілеп, пор-шеңь ешбір кедергісіз қозғалады дейік. Егер поршеньді қозғайтын күш қима ауданы мен қысым көбейтіндісіне тен, болса (p•$), осы күштін, атқарар жұмысы: А = рS(dһ, немесе Sdһ көлемнің өзгеруі-не ((IV) тең болғандықтан және көлемнің V1-ден V2-ге дейін өзгергенін ескерсек:

Бұл теңдеуді шешу үшін қысымның көлемге тәуелділігін білу керек. Ол үшін изобаралық, изотермалық, адиабаталық және изо-хоралық процестердегі идеал газдардың жұмысын карастырайық.

Информация о работе Термодинамиканың бiрiншi заңы