Автор работы: Пользователь скрыл имя, 20 Января 2013 в 19:33, реферат
Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.
Введение
1 Общая характеристика установки производства серной кислоты
2 Сырьевые источники получения серной кислоты 3
4 Охрана окружающей среды связанная с производством серной кислоты.
Заключение
Список литературы
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И
Федеральное государственное автономное
образовательное учреждение высшего профессионального
образования
«Национальный исследовательский ядерный
университет «МИФИ»
Озерский технологический институт филиал
НИЯУ МИФИ
Южно-Уральский политехнический колледж
Комиссия химической технологии и радиационной
безопасности
Реферат
Предмет: Технология неорганических веществ
Тема
Преподователь О. М. Казакова
Студент гр. ХТ-02 М.
А. Халилеева
Озерск
2012
Содержание
Введение
1 Общая характеристика установки производства серной кислоты
2 Сырьевые источники получения серной кислоты
3
4 Охрана окружающей среды связанная с производством серной кислоты.
Заключение
Список литературы
Введение
Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.
В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО3 · т Н2О.
Моногидрат серной кислоты - бесцветная маслянистая жидкость с температурой кристаллизации 10,37 оС, температурой кипения 296,2 оС и плотностью 1,85 т/м3. С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н2SО4 · Н2О, Н2SО4 · 2Н2О, Н2SО4 · 4Н2О и соединения с оксидом серы Н2SО4 · SО3 и Н2SО4 ·2SО3.
Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.
Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы "оксид серы (VI) - вода". С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5оС при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 оС (температура кипения моногидрата) до 44,7 оС, отвечающей температуре кипения 100 %-ного оксида серы (VI).
При нагревании паров серной кислоты выше 400 оС она подвергается термической диссоциации по схеме:
400оС 700 оС
2 Н2SО4 <=> 2Н2О + 2SО3 <=> 2Н2О + 2SО2 + О2.
Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.
Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон ( от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности.
Установка предназначена
для получения технической
Ввод установки в эксплуатацию - 1999 г.
Установка производства серной кислоты рассчитана на переработку 24 тыс. тонн в год сероводородсодержащего газа.
Проектная производительность установки по серной кислоте составляет 65 тыс. тонн в год.
Проект установки выполнен ОАО "ВНИПИнефть" на основании технологии датской фирмы "Хальдор Топсе АС" и ОАО "НИУИФ" г. Москва.
Российская часть установки представлена секцией подготовки сырья, котлами-утилизаторами КУ-А,В,С сжигания сероводородсодержащего газа, блоками деаэрации обессоленной воды, нейтрализации сернокислотных сбросов и обеспечения установки воздухом КИП.
Датской стороной предоставлен блок WSA в составе:
· контактного аппарата (конвертера);
· конденсатора;
· системой циркуляции и откачки серной кислоты;
· системой воздуходувок подачи воздуха на сжигание H2S, охлаждения и разбавления технологического газа;
· системой подачи силиконового масла (блок управления кислотными парами) в технологический газ с целью снижения выбросов SOx в атмосферу.
2 Сырьевые источники получения серной кислоты
Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV).
Природные залежи самородной серы невелики, хотя кларк ее равен 0,1 %. Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов метало, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов.
Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV).
При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает.
В общей схеме сернокислотного производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты.
В нитрозном способе катализатором служат оксиды азота. Окисление БО2 происходит, в основном, в жидкой фазе и осуществляется в башнях с насадкой. Поэтому нитрозный способ по аппаратурному признаку называют башенным. Сущность башенного способа заключается в том, что полученный при сжигании сернистого сырья сернистый газ, содержащий примерно 9% SО2 и 9-10% О2, очищается от пыли и поступает в башенную систему, состоящую из нескольких башен с насадкой. В башнях протекает ряд абсорбционно-десорбционных процессов, осложненных химическими превращениями. В первых двух-трех башнях насадка орошается нитрозой, в которой растворенные оксиды азота химически связаны в виде нитрозилсерной кислоты КОНSО4. В последующих трех – четырех башнях десорбированные в газовую фазу в результате реакции окислы азота поглощаются серной кислотой, образуя вновь нитрозилсерную кислоту. Таким образом, окислы азота совершают кругооборот и теоретически не должны расходоваться. Нитрозным способом получают загрязненную примесями и разбавленную 70–75 % серную кислоту, которая используется в основном в производстве минеральных удобрений.
Нитрозный метод получения H2SO4 был впервые применён в середине XVIII века. До 20-х годов текущего века процесс получения серной кислоты нитрозным методом проводился в больших свинцовых камерах (камерный метод). Теперь он осуществляется в специальных башнях (башенный способ). Получаемая по башенному способу кислота, как правило, содержит 76 % H2SO4 и несколько загрязнена различными примесями. Основным потребителем этой кислоты является промышленность минеральных удобрений.
Башни выкладываются из кислотоупорных керамических плит с наружным кожухом из листовой стали. Внутри они неплотно заполнены насадкой из кислотоупорной керамики.
На рис. 1 изображена принципиальная
схема производства серной кислоты
башенным способом. Первая башня, в
которую поступает горячий
1 – денитрационная башня; 2 – продукционная башня; 3 – окислительная башня; 4 – абсорбционная башня; 5 – холодильники кислоты
Рисунок 1 – Принципиальная схема башенной системы
Денитрационная башня орошается небольшим количеством серной кислоты, поэтому кислота в ней сильно нагревается, что способствует выделению окислов азота. Одновременно с денитрацией кислоты в башне 1 сернистый ангидрид частично абсорбируется серной кислотой и окисляется окислами азота. По характеру протекающих процессов первую башню можно схематически разделить на три зоны. В нижней зоне происходит упаривание серной кислоты с выделением водяных паров в газовую фазу, в средней зоне окислы азота выделяются из нитрозы вследствие наибольшего ее разбавления, в верхней зоне конденсируются поступающие снизу пары воды и, следовательно, происходит разбавление нитрозы и частичное окисление растворяющегося в ней SO2. Строгого разделения перечисленных процессов по зонам провести нельзя, так как частично они совмещаются друг с другом. Кроме этих процессов, в первой башне из газа улавливаются также остатки пыли, поглощаются мышьяковистый ангидрид и двуокись селена, конденсируются пары серной кислоты (образуются из SO3, присутствующего в обжиговом газе), происходит образование сернокислотного тумана и др. Туман лишь частично поглощается в первой башне, большая его часть поступает в последующие башни системы, где вследствие большой суммарной поверхности частиц тумана он существенно влияет на протекающие в башнях процессы.
Готовую продукцию в башенных системах отводят только из денитрационной башни, где почти полностью улавливаются все примеси обжигового газа, поэтому башенная кислота загрязнена мышьяком, селеном, огарковой пылью и другими примесями.
Основное назначение второй башни — абсорбция сернистого ангидрида из обжигового газа серной кислотой и окисление SO2 нитрозой. В этой башне образуется большая часть серной кислоты (70 — 80% продукции системы), поэтому ее часто называют продукционной башней. Процесс кислотообразования протекает по всей высоте башни 2, однако основное количество сернистого ангидрида окисляется в ее нижней части, где условия наиболее благоприятны для этого процесса. Окислы азота, выделяющиеся из нитрозы при окислении SO2, частично поглощаются в верхней части башни орошающей ее нитрозой, но большая часть окислов поступает вместе с газовым потоком в окислительную башню 3. Здесь окисляется такое количество окиси азота, которое требуется, чтобы соотношение между NO и NO2 было наиболее благоприятным для поглощения их в абсорбционных башнях.
В башне 3 NO окисляется кислородом,
содержащимся в газе. Степень окисления
окислов азота в этой башне
регулируют, пропуская часть газа
по обводному газопроводу помимо
башни (байпас). Из окислительной башни
газ поступает в башню 4, где
окислы азота поглощаются орошающей
ее серной кислотой; эту башню называют
абсорбционной или
При охлаждении обжигового газа и образовании серной кислоты выделяется большое количество тепла, поэтому в денитрационной и продукционных башнях орошающая кислота нагревается и перед возвратом на орошение ее приходится охлаждать. Для этого установлены холодильники 5. В процессе производства башенной кислоты неизбежны потери окислов азота с отходящими газами, с продукционной кислотой и др. Для восполнения этих потерь в продукционную башню 2 подается азотная кислота. Вода, необходимая для образования серной кислоты, вводится в денитрационную и продукционную башни 1 и 2.
4 Охрана окружающей среды связанная с производством серной кислоты.
Основным сырьем для производства серной кислоты, является сера. Она относится к числу наиболее распространенных числу химических элементов на нашей планете.
Производство серной кислоты происходит в три стадии на первой стадии получают SO2, путем обжига FeS2, затем SO3, после чего на третьей стадии получают серную кислоту.
Научно-техническая революция и связанный с ней интенсивный рост химического производства, вызывает существенные негативные изменения в окружающей среде. Например отравление пресных вод, загрязнение земной атмосферы, истребление животных и птиц. В результате мир оказался в тисках экологического кризиса. Вредные выбросы сернокислых заводов следует оценивать не только по действию содержащегося в них оксида серы на расположенные вблизи предприятия зоны, но и учитывать другие факторы - увеличение количества случаев респираторных заболеваний человека и животных, гибель растительности и подавление ее роста, разрушение конструкций из известняка и мрамора, повышение коррозионного износа металлов. По вине “кислых” дождей повреждены памятники архитектуры (Тадж-Макал).