Автор работы: Пользователь скрыл имя, 19 Ноября 2013 в 10:17, дипломная работа
Изучена зависимость сорбции ионов тяжелых металлов (меди (II), никеля (II), кобальта (II), цинка (II), кадмия (II), свинца (II)) полисилоксанами, модифицированными аминопропионатными группами, от кислотности аммиачно-ацетатного буферного раствора и определены оптимальные интервалы рН сорбции.
Групповое извлечение всех перечисленных выше ионов металлов на исследуемых карбоксиэтилированных полисилоксанах наблюдается при значении рН 6.5. Отделение ионов никеля (II), кобальта (II) и цинка (II) от остальных металлов может быть достигнуто при рН=8.0.
Таблица 1.1
Характеристики
β-карбоксиэтилированных
Химическое модифицирование оксидных носителей | ||||
Носитель |
Растворитель |
DS* |
νN, ммоль/г |
νCOOH**, ммоль/г |
Силикагель для ТСХ (Чехословакия) d=0.005–0.042 мм |
Вода |
1.36 |
0.89 |
1.21 |
Толуол |
1.57 |
0.83 |
1.26 | |
Метанол |
1.53 |
0.96 |
1.47 | |
Золь-гель метод | ||||
Силан |
Растворитель |
DS* |
νN, моль/г |
νCOOH**, моль/г |
Si(OC2H5) |
Вода |
1.79 |
1.80 |
3.23 |
* Степень замещения (β-карбоксиэтилирования) DS=[(ωC/ωN)(MN/MC)–3]/3 рассчитана без учета возможного наличия OC2H5-групп. **νCOOH = νN·DS характеризует общее количество карбоксильных групп на 1 г сорбента.
В работах [59, 61] представлены предварительные результаты изучения селективности синтезированных хелатообразущих сорбентов с функциональными группами β-аланина по отношению к ионам переходных металлов из водных растворов при рН 6.3. Данное значение рН было выбрано как оптимальное значение рН комплексообразования ионов меди (II) с мономерным аналогом – иминодипропионовой кислотой.
При изучении селективности установлено, что для карбоксиэтилированных кремнийсодержащих сорбентов как суммарная сорбция ионов металлов, так и избирательность к ионам меди (II) больше, чем для сорбентов, содержащих первичные аминогруппы. Сорбционный ряд Co(II)≈Ni(II)<<Cu(II)>Zn(II) соответствует известному ряду Ирвинга – Вильямса для O, N-лигандов. Наибольшее значение сорбируемости по ионам меди (II) наблюдается для β-карбоксиэтилированного полисилоксана, полученного золь-гель методом.
В работе [61] описан синтез и изучение селективности полисилоксана с фениламинопропионатными группами. В данном случае полисилоксан был получен из 3-хлорпропилтриэтоксисилана и этилового эфира β-анилинпропионовой кислоты в присутствии иодида натрия без применения растворителя. Селективность модифицированного полисилоксана изучали так же, как и в работе [59]. Сорбционный ряд соответствует раду Ирвинга – Вильямса, аминофенилпропионатный сорбент, так же как и иминодипропионатные полисилоксаны обладают большей избирательность к ионам меди, чем полисилоксаны, содержащие первичные аминогруппы.
С целью модифицирования
матрицы полисилоксанов осуществлен
синтез ряда новых гибридных органо-
Автором [62] исследована сорбция меди (II), никеля (II) и кобальта (II) перечисленными выше сорбентами на основе соединений кремния, модифицированных оксидами алюминия, циркония или титана, с функциональными группами N-замещенных β-аминопропионовых кислот в зависимости от природы раствора, кислотности, концентрации иона комплексообразователя, времени контакта фаз. Основные сорбционные характеристики гибридных органо-неорганических сорбентов приведены в табл. 1.2.
Ряды сродства ионов
переходных металлов к поверхности
карбоксиэтилированных
Таблица 1.2
Основные сорбционные характеристики гибридных
органо-неорганических сорбентов [62]
Полисилоксан |
Ион металла |
рН |
а, моль/г |
t, мин |
1 |
2 |
3 |
4 |
5 |
Медь (II) |
5.5–6.5 |
0.653 |
90 | |
Никель (II) |
5.5–6.5 |
0.428 |
60 | |
Кобальт (II) |
6.0–6.5 |
0.278 |
60 | |
Медь (II) |
5.5–6.0 |
0.697 |
120 | |
Никель (II) |
6.0–6.5 |
0.618 |
90 | |
Кобальт (II) |
6.5–7.0 |
0.379 |
120 | |
Медь (II) |
5.5–6.0 |
0.724 |
180 | |
Никель (II) |
6.0–6.5 |
0.428 |
120 | |
Кобальт (II) |
6.5–7.0 |
0.478 |
120 | |
Медь (II) |
7.0–8.0 |
0.503 |
90 | |
Никель (II) |
8.0 |
0.342 |
45 | |
Кобальт (II) |
7.0–8.0 |
0.386 |
60 | |
Медь (II) |
6.5–7.5 |
0.454 |
30 | |
Никель (II) |
8.0 |
0.258 |
60 | |
Кобальт (II) |
7.0–8.0 |
0.372 |
60 | |
Медь (II) |
7.5–8.0 |
0.415 |
120 | |
Никель (II) |
7.5–8.0 |
0.365 |
180 | |
Кобальт (II) |
7.5–8.0 |
0.382 |
180 | |
Медь (II) |
7.0–8.0 |
0.070 |
45 | |
Никель (II) |
6.0–7.0 |
0.030 |
90 | |
Кобальт (II) |
4.0–5.0 |
0.058 |
90 |
В работе [62] также установлено, что карбоксиэтилированные аминопропилполисилоксаны при контакте с растворами, содержащими эквимолярные количества нескольких переходных металлов, проявляют значительную избирательность при извлечении ионов меди (II).
Однако автором [62] не изучена сорбционная способность модифицированных полисилоксанов по отношению к другим ионам тяжелых металлов, таких как кадмий (II), цинк (II), свинец (II) и т.д. Кинетика сорбции ионов меди (II), никеля (II) и кобальта (II) была изучена из индивидуальных растворов. В реальных условиях растворы представляют собой многокомпонентные системы и необходим учет влияния каждого компонента на извлечение и концентрирование интересующего иона.
Предварительные результаты показывают, что кремнийорганические сорбенты, содержащие аминопропионатные группы, являются перспективными материалами для разделения ионов переходных металлов.
2. Постановка задачи исследования
Одной из актуальных задач аналитической
химии является определение тяжелых
металлов в природных и промышленных
объектах. Во многих объектах окружающей
среды они находятся в
На кафедре аналитической
В связи с этим, основной целью данной работы является изучение сорбционных свойств новых, ранее не изученных модифицированных полисилоксанов по отношению к ионам тяжелых металлов (медь (II), никель (II), кобальт (II), цинк (II), свинец (II) и кадмий (II)), для чего необходимо решение следующих задач:
3. Экспериментальная часть
3.1. Приготовление растворов и реактивов