Рентген саулелери

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 17:45, реферат

Краткое описание

Рентген сәулелер
Рентген сәулесі — гамма және ультракүлгін сәулелер арасындағы диапазонды қамтитын электрмагниттік толқындар. Толқын ұзындығы 2 ангстремнен кіші Рентген сәулесі шартты түрде қатаң, 2 ангстремнен үлкен Рентген сәулесі жұмсақ Рентген сәулесі деп аталады. Рентген сәулесін 1895 ж. неміс физигі В.К. Рентген ашқан.

Содержание

Рентген сәулелері. Рентгенталогия.
Рентген сәулелерінің ашылуы.
Рентген сәулелерінің қасиеттері.
Рентген сәулелерінің шашырауы. Комптон құбылысы
Дифракциялық әдістер.
Құрылымдық кристаллографияның негіздері.
5.2 Рентген сәулелерінің физикасы.
Рентгендік техника.
Рентген құрылымдық талдаудың әдістері.
Рентгендік фазалық талдау .
Рентген сәулелерінің қолданылуы.

Прикрепленные файлы: 1 файл

реферат рентген.doc

— 202.50 Кб (Скачать документ)

Тербелу әдісінде монокристалл таңдалған ось айналасында  толық  айналымдар жасамай, тек кіші бұрыш  аралықтарында кішігірім тербелістер  жасайды. Бұрыш аралықтарының координаттары сәйкес дифракциялы дақты сипаттайтын   шамасын өлшейді және анықтайды.

Рентген гониометр әдісінде (Вайссенбергтің) монохроматты сәулелену  қолданылады, онда таңдалынған ось  айналасында кристалды айналдырады, сол кезде цилиндрлік қабыршақты касета   айналып жатқан кристалл осінің бойымен ілгерімелі-артқа қозғалғандықтан, шағылу оның үшінші координатасында ажыратылады. Дифракциялық суреттің  барлығын түсірмей, айқын лайықтау көмегімен қандай да бір қабатты сызықты, көбінесе нөлдік қабатты сызықты кесіп алады. Мұндай түсіру әдісінде әрбір интерференциялық рефлекс пленкадағы айқын жерге түседі де рефлекстердің қабаттасуы болмайды. Осындай амал көмегімен шағылу сфераларын қолдана отырып, интерференция индекстерін анықтайды да, олар арқылы сөну заңдарын орнатады. Содан соң   кестелер арқылы симметрияның федоровтік кеңістіктік тобын анықтайды, яғни басқаша айтқанда, берілген кеңістіктік торға сәйкес симметрия элементтерінің толық терімін анықтайды, бұл ақпарат кейін электронды тығыздық проекцияларын есептеу қисаптарын жеңілдетеді. Кейін әрбір рефлекстің интенсивтілігін анықтау арқылы құрылысты амплитудалар мәндері анықталынып, электронды тығыз-дық проекциялары салынады.

Ұнтақ әдісінде немесе дебаеграммада  монохроматты  рентген сәулеленуін  қолданады. Поликристалдық үлгіні тар рентген сәулелену жолында орналастырады. Ұнтақта сәулеге қатысты әр түрлі ориен-тациялы орналасқан кристалдар бар болатындықтан, әр мезетте орналасуы Вульф – Бреггтің шартына сәйкес келетін кристалдар табылады. Нәтижесінде d1, d2, d3,..., dn кеңістік аралық қашықтыққа сәйкес келетін ұнтақтағы барлық кристалдар, түсірілген сәулеге қатысты «шағылушы» (бірақ сөндірмеуші) орынға түседі. Шағылған сәулелер қатал айқындалған бұрышты конусты құрайды.

Ұнтақ әдісіндегі рентгенограмма түсірілімінде фотопленка жолағына кіретін рентген сәулесі, оны диаметрі бойынша қиғандай  үлгі айналасында (касетада) орналастырады. Нәтижесінде бірінші сәуле бағытынан салыстырмалы симметриялы орналасқан  шағылған сәулелердің әрбір конусы фотопленкада имектер түрінде жарық түсірілген із қалдырады. Имектер араларының қашықтығы мен фотопленка сақинасының радиусын анықтау арқылы шағылған сәулелер конустарының бөліну бұрыштарын   есептеуге болады, осыдан кристалдардың шағылу кеңістігіне түсетін бұрыш   екендігі шығады, олай болса, осыдан монохромат рентген сәулесінің   толқын ұзындығын және кристалдағы   кеңістік аралық қашықтықтарының мәндерін де есептеуге болады. Ұнтақ әдісі бойынша зерттелетін зат кристалдарының симметриясы жөнінде қосымша мәліметсіз, бұл заттың құрылымын анықтау мүмкін емес. Бірақ тәжірибе қарапайымдылығы мен кеңістік аралық қашықтықты есептеу  жеңілдігі, бұл әдістің рентгенофазалық талдауда кеңінен қолданылуын түсіндіреді.

 Индицирлеу - бұл дифракциялық  максимумдардың индекс-терін, яғни  шағылған кеңістіктер жиынының: H=nh, K=nk, L=nl индекстеріне (hkl) пропорционал бүтін сандар үштігін (HKL)  анықтау, мұндағы n – шағылу реті. Кристалл симметриясы төмендеген  сайын индицирлеу есебі қиындай түседі, себебі тәуелсіз параметрлер саны жоғарлайды [5, C.173-178,200-210].

Ең айқын рентгенограммалар  кристалдық үлгілер үшін байқалады, ал сұйықтықтар, шынылар және аморфты  заттар тек шайылған дифракциялық сақиналардың болғандығымен сипатталады және   бұрышы өскенде олардың интенсивтілігі тез арада түседі. Сөйтсе де, осындай дифрактограммаларды талдай отыра, осы орталарда алыс реті жоқ, бірақ жақын реті орын алатын құрылымы жөнінде кең ақпарат алуға болады.

Рентген құрылымдық талдау, металдарды және оның қоспаларын зерттеу  кезінде ерекше мәнге ие болады. Рентген сәулелерін қолдану құрылымдарды анықтаумен шектелмейді. Дифракция құбылысын қолданудың басқа түрлері де белгілі, олар – рентгенофазалық  талдау және рентгендік микроскопия.

Рентгендік камера –  фотопленкада дифракциялы рентгендік максимумды барынша тіркеуге мүмкіндік  беретін құрылғы. Рентгендік камераға сәулеленудің көзі ретінде рентгендік трубка қызмет етеді. Рентген  камераларының қолдану бағытына байланысты конструктивті түрде әртүрлі бола алады (монокристалдар мен поликристалдарды  зерттеуге арналған рентгендік камералар, шағын бұрышты рентгенограммаларды алуға арналған рентген камералар, рентген топографиясына арналған рентгендік камера және т.б.). Барлық рентгендік камералардың құрамында коллиматор (монохроматор немесе сұрыпталған сорғыш фильтр), үлгіні орналастыру түйіні, фотопленкасы бар касета (жалпақ немесе цилиндрлік),   үлгінің қозғалу   механизмі   (кейде кассеталар)  болады.

Рентгендік дифрактометр дегеніміз иондық және сцинтилляционды  тіркеу әдісін қолданатын кристалдық объектіде шоғырланған рентгендік сәулеленудің интенсивтілігі мен бағытын  өлшеуге арналған  құрылғы. Рентгендік дифрактометр рентгендік сәулелену  көзінен, зерттелетін үлгі орналастырған рентгендік гониометрден, сәулелену детекторынан және электронды өлшеуші –тіркеуіш құрылғысынан құралған. Рентгендік дифрактометрдегі үлгінің дифракциялық суретін үлгі мен есептеуіштің айналуына байланысты болады. Дифрактометрлерде Брэгг – Брентано мен Зееман–Болиннің фокустелу схемаларын қолданады. Рентген камераларымен салыстырғанда рентгендік дифрактометр жоғарғы дәлдікке, сезімталдыққа, экспрессивтілікке ие және ақпаратты алу процесі толығымен автоматтандырылған болуы мүмкін.

 

Рентгендік  фазалық талдау

Сапалы және сандық рентгендік фазалық талдау. Талдау әдістері.

 Рентгендік фазалық  талдау, өзімен сандық немесе  сапалық сан анықтау және әртүрлі  қиындықты жүйелерде кристалдық  фаза қатынастарын анықтауды  ұсынады. Кристалдық фаза түсінігі бір элементтің кеңістікті біртекті, тепе-теңдік күйін анықтайды. Әдіс әрбір кристалдық фазаның дифракциондық сақиналар мен олардың интенсивтілігінің орналасуының индивидуал, қайталанбас суретін беруге негізделген. Сондықтан әртүрлі заттар кристалдарының қоспаларын зерттегенде дифракциондық сурет оның сандық құрамының интенсивтілігіне пропорционал дифрактограммаларының қосындысынан тұрады.

Сапалы рентгендік фазалық  талдау рентгендік спектр (hkl) сызығының  І интенсивтілігіне сәйкес келетін  және кеңістік аралық қашықтық d(hkl) мәндеріне сәйкес келетін кристалдық фазалар идентификациясына негізделген.

Сандық талдау қоспадағы  өзге фазалардың санын анықтауға  негізделген, оның ішінде: үлгі кристалдарының орташа өлшемін сызық профилінің анализі бойынша өлшемінің үлесу функциясын анықтау; дифракциондық сызық пен осы сызықтардың орнынан қозғалу профилінің анализін жүргізіп ішкі кернеуді зерттеу; кристалдар орналасуының құрылымын зерттеу. Сандық рентгендік талдау зерттелініп жатқан объектідегі сәйкес келуші фаза құрылымынан тәуелді дифракционды шағылу интенсивтілігіне негізделген. Кристалдық формаларды (фазаларды) идентификациялау үшін эталонды кристалдық үлгілерден дифрактограммаларды алып немесе саны өте көп кристалдық заттардың рентгенограммалық сызығының салыстырмалы интенсивтілігі мен кеңістік аралық қашықтық жөнінде ақпаратқа ие арнайы кестелерді (ASTM картотекасымен, Финк бағыттауышын) қолдану қажет. Рентгендік фазалық талдауда әдетте дифракционды сурет ұнтақ әдісі шарттарындағы рентгендік кванттар есептеуіштері көмегімен дифрактометрлі тіркеледі [5, C.388-393].

Зерттелетін кристалдық заттың фазалық құрамын анықтау  тәжірибе арқылы анықталған кеңістік аралық d және сәйкес келуші рентгенограмма I интенсивтіліктерін осы өлшемдердің  анықтаушы-анықтамаларда берілген кестелік мәндерімен салыстыру әдісімен жүргізеді. Олардың сәйкес келуінде заттың және оның кристалдық модификациясының дұрыс анықталғандығын қорытады.

Сандық фазалық рентгендік талдаудың бірнеше әдістері әзірленген.

Араластырып отыру әдісі (ішкі стандарттың) рентге-нограммадағы сызықтардың интенсивтіліктері мен анықталатын фазаға тиісті саны қоспада алдын-ала берілген эталонды зат үшін сызықтар интенсивтіліктерін салыстыруға негізделген. Алдын-ала анықталатын фаза мен эталонды зат ұнтағынан құралған әртүрлі құрамды қоспалар сериясы жасалынады. Қоспаның рентгено-граммалық түсірілімі дифрактометрлерде немесе рентгендік камераларда және фотоәдіс көмегімен түсірілген рентгенограммалар сызықтарының қараюы немесе дифракционды сызықтардың интен-сивтіліктерін өлшеу жүргізіледі. Осыдан кейін зерттелетін фаза концентрация координатасында рентгенограммадағы зерттелетін фаза сызығының интенсивтілігі мен эталонды заттың қатынасында градуирленген график құруға болады.

Бұл әдістің дәлдігі  зерттелетін және эталон заттарының ұсақталу дәрежесі мен әбден араластырылуында, бұл заттардағы  рентген сызықтарының жұтылу коэффициенттерінің бір-біріне қаншалықты жақындауынан тәуелді болады.

Экспресс-талдау үшін арнайы гомологиялық жұп  әдісі ойлап  табылған, ол қоспалар мен қорытпалардағы рентген серияларын алу және интенсивтіліктері бірдей әр түрлі фазалар сызықтарын анықтауға негізделген.

Егер компонеттер қоспасын дайындау мүмкін болмаса, онда үлгі мен  эталон түсірілімін тізбекті өткізетін  тәуелсіз эталон (сыртқы эталон) әдісін қолданады. Мысалы, оны бетінің бір бөлігіне фольга түріндегі эталонды материал бекітілген, зерттелетін қоспаның цилиндрлік үлгісі үшін орындауға болады. Цилиндрлік үлгіні айналдыру кезінде рентгендік сәулелер зерттелетін бөліктен және эталоннан көп рет тізбекті түрде шағылады және үлгі мен эталоннан бір уақытта рентгеннограммалар пайда болады. Сол кезде эталоннан шағылу интенсивтілігі эталонның цилиндр бетінде, яғни фольга енінде орын алатын доға ұзындығынан тәуелді болады. Эталон жолағының енін өзгерте отырып, эталон және үлгі рентгенограммаларындағы әр түрлі индексті сызықтар интенсив-тіліктерін сәйкестендіруге қол жеткізу арқылы сәйкес келуші градуирленген графиктер құруға болады.

Салу әдісі зерттелетін  үлгі рентгенограммасы мен таза түрде  болатын жеке құраушылардың рентгенограммаларын визуалды түрде салыстыруға негізделген. Кейбір жағдайда сандық фазалық рентгендік талдауды эталонсыз рентгенограмманы түсіру арқылы жасауға болады. Эталонсыз түсіру әдісі ретгенограмма фазаларындағы сызықтар интенсивтілігі фазаның көлемдік құрамының пропорционалдығына және рентгенограммадағы әрбір фаза сызығының абсолют интенсивтілігін  немесе әр түрлі фаза сызықтарының интенсивтіліктерінің қатынасын өлшей отыра, әрбір фаза концентрациясын анықтау мүмкіндігіне негізделген.   Бұл әдістің қарапайымдылығына қарамастан, оны қолдану шектеулі, себебі рентгенограммалардағы сызық интенсивтілігі тек зерттелетін фазаның концентрациясынан ғана емес, сонымен қатар фаза атомдарынан (атомдық көбейткіш), атомдардың орналасуынан (құрылымдық көбейткіш), түсірудің геометриялық шарттарынан (бұрыштық көбейткіштер) және атомдардың жылулық тербелісінен (жылулық көбейткіш) тәуелді.

Неғұрлым жұтылу коэффициенті жоғары болса, соғұрлым талдаудың сезімталдығы жоғары болады. Сондықтан қоспалардағы рентген сәулелерін қатты жұтатын заттар әлсіз жұтатындарға қарағанда төмен концентрацияларда кездеседі. Талдаудың сезімталдылығы кристалдардың ұсақталуында және ішкі кернеу болғанда төмендейді.Рентгендік фазалық талдауды металтануда (металдармен қоспалардың фазалық құрамын зерттеуде), минералогияда (күрделі минералдардың құрамын анықтауда), химияда және химия технологияларында кең пайдаланады.

Рентген сәулелерінің қолданылуы.

Рентген сәулелерін медицинада науқас кісінің ауруын анықтау үшін және кейбір ауруды емдеу үшін пайдаланады.

Рентген сәулелерін ауруды анықтау  үшін пайдалану рентген сәулелерінің жұтылу қасиеттерінің ерекшелігіне негізделген. Адамның мүшелері түзілген ұлпалардың рентген сәулелернің  жұту қабілеті әр түрлі болады, мысалы рентген сәулелерін жұмсақ ұлпалар нашар жұтады, сүйектің минерал заттары өте күшті жұтады. Сондықтан адамның мүшесінен рентген сәулелері өткенде онын интенсивтігі түрліше кемиді де көлеқке кескіні түседі. Ол кескіннен адамның ішкі органдарының формасы мен орналасуы айқын көрінеді. Осындай кескіндер бойынша олардың сау не ауру екендігін білуге болады.

Рентген сәулелерінің көмегімен мысалы, адамның ішкі органының ауру-сауын  айырғанда адамды рентген түтігімен  флуоресценцияланғыш экранның аралығына  тұрғызады да одан рентген сәулелері өткізіледі, сонда экранның бетіне оның зерттелетін органдарының көлеңкелік кескіндері пайда болады. Флуоресценцияланғыш экранның орнынан рентген сәулелері  сезгіш арнаулы фотопластинка (немесе фотопленка) қойып зерттелетін органның суретін (рентгенограммасын) түсіріп алуға да болады. Мұндай ретнгенограмма флуоресценцияланғыш экран бетінде байқалатын кескінге ұқсас, бірақ контрастылығы керісінше болады, өйткені рентгенограмма негативті кескін болып табылады.

Рентген сәулелерін ауруды емдеу мақсатымен пайдалану олардың биологиялық әсеріне негізделген. Рентген сәулелерінің биологиялық әсері тек олардың қатаңдығына және жұтылу мүлшеріне ғана емес, әр түрлі ұлпалардың рентген сәулесін сезгіштігіне де байланысты. Мысалы, мол рентген сәулелерінің әсерінен зардапты ісіктердің ұлпалары, сау ұлпалардан гөрі оңай бүлінеді; рак ауруын рентген сәулелерімен емдеу осыған негізделген. Рентген сәулелері осы кездегі техникада кең түрде қолданылады. Мысалы, металлургиялық өнеркәсіпте, металл өңдеуші және машина жасаушы заводтарда рентген сәулелерін, технологиялық процестерді бақылап-басқарып отыру үшін, материалдар мен детальдарды бұзбай-жармай, олардың ішінде ақауы бары-жоғын білу үшін пайдаланады. Ол үшін рентген сәулелерін сыналатын детальдан өткізіп, мысалы фотопленкаға түсіреді. Сонда пленка қараяды. Оның караю дәрежесі әрине түскен рентген сәулелерінің интенсивтігіне байланысты, ал рентген сәулелерінің интенсивтігі, оның детальдан өткенде бәсеңдеуіне байланысты. Егер пленканың қараю дәрежесі барлық жерінде бірдей болмаса, онда пленканың көбірек қарайған орнына түскен рентген сәулелерінің интенсивтігі күштірек болғаны, яғни ол жерге түскен рентген сәулелері детальда аз жұтылғаны. Мысалы, металл құйманың ішінде кішкентай газды қуыс болса, оның рентгеиограммасы осы айтылғандай болды, сонда пленканың көбірек қарайған орыны осы қуысты көрсетеді. Осылайша детальдың, басқа ақауларын, ішіндегі жарығын, кірмелерін, т. т. да білуге болады.

Информация о работе Рентген саулелери