Автор работы: Пользователь скрыл имя, 19 Сентября 2013 в 00:25, курсовая работа
Ректификация известна с начала XIX века как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию все шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производствах органического синтеза, изотопов, полимеров, полупроводников и различных других веществ высокой чистоты).
Па.
Сопротивление газожидкостного слоя принимаем равным:
,
где hпж – высота парожидкостного слоя, м; ; k — отношение плотности пены к плотности чистой жидкости, принимаем к=0,5; h— высота уровня жидкости над сливным порогом, м. По таблице 3 [7] h=0,01м.
Подставив, полученные значения получим гидравлическое сопротивление:
Па.
Сопротивление всех тарелок колонны:
,
где п— число тарелок.
Па.
1.7 Проверка расстояния между тарелками
Минимальное расстояние между тарелками должно обеспечить работу гидравлического затвора на тарелке. Проверим, соблюдено ли при расстоянии Н=0,3 м - необходимое для нормальной работы тарелок условие:
,
.
Так как 0,3>0,0846 условие выполняется, расстояние подобрано верно.
1.8 Тепловые расчеты
Целью расчета является определение расхода греющего пара на обогрев колонны. По диаграмме t- x- y находим температуру кипения и соответствующую ей удельную теплоемкость:
Исходной смеси:
tF=85° C
с в=4357,6 Дж/(кг·К)
с э=3289,2 Дж/(кг·К)
Дистиллята:
tD=79° C
с в=4231,9 Дж/(кг· К)
с э=3226,3 Дж/(кг· К)
Кубового остатка:
tW=99° C
с в=4609 Дж/(кг·К)
с э=3477,7 Дж/(кг·К)
Для расчета удельных теплот испарения смесей этанола с водой принимаем следующие значения чистых веществ [6]:
rвF=1961·103 Дж/кг
rэF=822·103 Дж/кг
rвD=2009·103 Дж/кг
rэD=844·103 Дж/кг
rвW=1936·103 Дж/кг
rэW=815·103 Дж/кг
Расчет ведем на массовые количества:
,
. (1.38)
Для исходной смеси при =28 %:
Дж/(кг·К),
Для дистиллята при =86 %:
Дж/(кг·К),
Дж/кг
Для кубового остатка =0.5%:
cw=3477.7·0.005+4609(1-0.005)=
Расход теплоты на испарение исходной смеси определяем по формуле:
,
где GД – расход дистиллята, кг/с.
кВт.
Расход теплоты на испарение дистиллята определяем по формуле:
кВт.
Расход теплоты на нагревание остатка определяем по формуле:
кВт.
Общий расход теплоты в кубе колонны (без учёта потерь в окружающую среду):
кВт.
С учётом 3% потерь в окружающую среду общий расход теплоты:
кВт.
Давление греющего пара P=300 кПа, (3 атм) по табл LVII [4] соответствует удельная теплота конденсации rгр=2171·103 Дж/кг
Расход греющего пара:
,
кг/с.
1.8.1 Расчёт и выбор теплообменного аппарата для подогрева исходной смеси
Необходимые для расчета заданные параметры:
GF=3,06 кг/с;
tсм=20°C;
аF=28%; tF=95,6°C;
P=300кПа.
Целью теплового расчёта
является определение необходимой
площади теплопередающей
Из основного уравнения теплопередачи:
где F – площадь теплопередающей поверхности, м2;
Q – тепловая нагрузка аппарата;
К – коэффициент теплопередачи Вт, (м2·к);
∆tср средний температурный напор, °К.
Определяем тепловую нагрузку:
,
где Gхол – массовый расход этанола, кг/с;
схол – средняя удельная теплоёмкость этанола Дж/кг·с;
t2, t1 – конечная и начальная температуры этанола, °С,
X= 1.05 – коэффициент учитывающий потери тепла в окружающую среду.
Средняя температура этанола:
,
.
Этому значению температуры этанола соответствует значение теплоёмкости С=2933 Дж/кг·К:
Q=3,06·2933·(95,6-20) ·1,05=712·103 Вт.
Расход пара определяем из уравнения:
Q=D·r,
D – расход пара, кг/с;
r – средняя теплота конденсации пара Дж/кг.
Из формулы (1.48) следует, что
,
.
Расчёт температурного режима теплообменника.
Цель расчёта – определение средней разности температур ∆tср и средних температур теплоносителей tср1 и tср2.
Для определения среднего температурного напора составим схему движения теплоносителей (в нашем случае схема противоточная)
Тн=132,7 пар Тн =132,7°С
∆tм = Тн - tк =132,7-85=47,7
∆tб = Тн – tн =132,7-20=112,7
.
tк=85 этиловый спирт tн =20°С
∆tм = 47,7
∆tб = 112,7
Тн выбираем по табл. XXXIX [4]
tср1 = Тн=132,7 °С, т.к. температура пара в процессе конденсации не меняется.
т.к , то
(1.49)
,
∆ tср= tср1-tср2=132,7-75,8=56,9°С.
Температура одного из теплоносителей (пара) в аппарате не изменяется, поэтому выбор температурного режима окончателен.
Ориентировочный расчёт площади поверхности аппарата. Выбор конструкции аппарата и материалов для его изготовления.
Ориентировочным расчётом называется расчёт площади теплопередающей поверхности по ориентировочному значению коэффициента теплопередачи К, выбранному из [4]. Принимаем К=900 Вт/(м2К), тогда ориентировочное значение площади аппарата вычислим по формуле (1.45):
,
Учитывая, что в аппарате
горячим теплоносителем является пар,
для обеспечения высокой
Для изготовления теплообменника выбираем трубы стальные бесшовные диаметром 25х2мм. необходимое число труб в аппарате n, обеспечивающее такую скорость, определим из уравнения расхода:
(1.51)
.
Такому числу труб в одном ходе n=12 шт, и площади поверхности аппарата F=13,9≈14 м2 по ГОСТ15118-79 и ГОСТ 15122-79 наиболее полно отвечает двухходовой теплообменник диаметром 325 мм, с числом труб 56 (в одном ходе 28 шт.), длинной теплообменных труб 4000 мм и площадью поверхности F=13м2.
1.8.2 Расчет дефлегматора
Тепловую нагрузку дефлегматора определим из теплового баланса.
Таблица 2— Тепловой баланс для дефлегматора
Приход теплоты |
Расход теплоты |
1. С паром из колонны
2. С охлаждающей водой
|
3. С дистиллятом
4. С охлаждающей водой
|
Приход теплоты
Расход теплоты
1. С паром из колонны
2. С охлаждающей водой
3. С дистиллятом
4. С охлаждающей водой
Потерями теплоты в окружающую среду пренебрегаем.
Тепловой баланс:
,
, (1.53)
откуда расход охлаждающей воды на дефлегматор:
.
Количество паров, поднимающихся из колонны:
,
кг/с.
Скрытую теплоту конденсации паровой смеси в дефлегматоре определяем по формуле:
,
где rДэ=852·103 Дж/кг, rДв=2307·103 Дж/кг при tД=79ْ С.
Дж/кг.
Принимаем температуру охлаждающей воды на входе в дефлегматор tн=9ْ С, на выходе tк=29ْ С, тогда расход воды на дефлегматор составит:
кг/с.
1.8.3 Выбор холодильника дистиллята
Расход воды на холодильник определяем из уравнения теплового баланса
Таблица 3—Тепловой баланс
Приход теплоты |
Расход теплоты |
1. С дистиллятом
2. С охлаждение волы
|
3. С охлажденным дистиллятом
4. С охлаждающей водой
|
Приход теплоты
Расход теплоты
1. С дистиллятом
2. С охлаждение волы
3. С охлажденным дистиллятом
4. С охлаждающей водой
Тепловой баланс:
(1.57)
Подставляя в последнее уравнение вместо , выражения из теплового баланса и решая его относительно расхода охлаждающей воды, имеем:
(1.58)
где сд – теплоёмкость дистиллята при его средней температуре. Дано tод охлаждения дистиллята t=35,0°С.
.
Теплопроводность дистиллята при этой температуре
, (1.59)
где ;
,
,
(начальные конечные
1.8.4 Холодильник кубового остатка
Таблица 4—Тепловой баланс для холодильника кубового остатка
Приход теплоты |
Расход теплоты |
1. С кубовым остатком
2. С охлаждение волы
|
3. С охлажденным кубовым остатком
4. С охлаждающей водой
|
, .60)
Подставим в это уравнение вместо , выражение теплового баланса и, решая его относительно расхода охлаждающей воды, получим:
, (1.61)
где - теплоёмкость кубового остатка при его средней температуре tхиср,
.
Конечная температура кубового остатка задана 45°С:
,
1.8.5 Кипятильник колонны
Тепловая нагрузка кипятильника колонны определялась ранее Q=5590,6 кВт, средняя разность температур в кипятильнике – разность между температурой греющего пара при Р=0,3МПа и температурой кипения кубового остатка:
При ориентировочно принятом значении коэффициента в кипятильнике к=1500 Вт(м3к) площадь поверхности теплообменника составит:
(1.62)
2. Конструктивный
расчёт ректификационной
2.1 Расчёт диаметров штуцеров, подбор фланцев
Рассчитаем диаметры основных штуцеров, через которые проходят известные по величине материальные потоки, а именно: штуцер подачи исходной смеси, штуцеры выхода паров из колонны, штуцер выхода кубового остатка.
Независимо от назначения
штуцера его диаметр
,
где V – объёмный расход среды через штуцер, м3/с; – скорость движения среды в штуцере, м/с;
;
Штуцер подачи исходной смеси
,
при
;
,
.
Принимая XF=1,5м/с, получим:
.
Стандартный размер трубы для изготовления штуцера по ГОСТ 9941-62, 70x3 (внутренний диаметр dвн=70-3·2=64мм).
Скорость движения питательной смеси в штуцере:
,
.
Штуцер подачи флегмы:
,
При
.
Принимаем XR=1,0м/с,
Тогда
Стандартный размер трубы для изготовления штуцера по ГОСТ 9941-62, 70x3 (внутренний диаметр dвн=70-3·2=64мм).
Скорость движения флегмы в штуцере:
Штуцер выхода кубового остатка:
,
При
плотность воды .
.
Принимаем XW=0,5м/с,
Тогда
.
Стандартный размер трубы для изготовления штуцера по ГОСТ 9941-62, 95x4 (внутренний диаметр dвн=95-4·2=87мм=0,087м)
Скорость движения кубового остатка в штуцере:
.
Штуцер выхода паров из колонны:
, (2.7)
.
Определяем среднюю плотность пара для верхней и нижней части колонны:
, (2.8)
.
Принимаем у=25 м/с.
.
Выбираем стальную электросварную
прямошовную ГОСТ10704-81
, (2.9)
Для всех штуцеров выбираем стандартные фланцы тип 1[9]. Для штуцера подачи исходной смеси и флегмы выбираем фланец (ГОСТ 1235-54) с основными размерами dв=72мм, D1=130мм, D=160мм, b=11мм, D2=110мм, h=3мм, d=12мм, n=8шт. Фланец штуцера кубового остатка dв=97мм, D1=160мм, D=195мм, b=22мм, D2=138мм, h=4мм, d=16мм, n=8шт. Фланец штуцера для выхода паров из колонны dв=634мм, D1=740мм, D=770мм, b=11мм, d=24мм, n=20шт, (ГОСТ1255-54). Уплотнительный материал принимаем паронит марки ПОН (ГОСТ481-80).
3.1 Гидравлический расчёт
Цель гидравлического
расчёта – определение величины
сопротивлений различных
Различают два вида сопротивлений (потерь напора): сопротивления трения (по длине) h1 и местные сопротивления hмс.
Для расчёта потерь напора по длине пользуются формулой Дарси-Вейсбаха.
,
где λ – гидравлический коэффициент трения;
l – длина трубопровода
или тракта по которому
d – диаметр трубопровода, м;
- скоростной коэффициент напора, м.
Для расчёта потерь напора в местных сопротивлениях применяется формула Вейсбаха:
,
где ξ – коэффициент местных сопротивлений;
- скоростной напор за местным сопротивлением, м.
3.1.1 Определение
геометрических характеристик