Автор работы: Пользователь скрыл имя, 05 Сентября 2012 в 16:03, реферат
Товарные и технологические свойства азотной кислоты. Сырье для производства азотной кислоты. Общая схема азотнокислотного производства. Физико-химические основы синтеза азотной кислоты из аммиака.
ПРОИЗВОДСТВО АЗОТНОЙ КИСЛОТЫ
Азотная кислота является одной из важнейших минеральных кислот и по объему производства занимает второе место после серной кислоты. Она образует растворимые в воде соли (нитраты), обладает нитрующим и окисляющим действием по отношению органических соединений в концентрированном виде пассивирует черные металлы. Все это обусловило широкое использование азотной кислоты в народном хозяйстве и оборонной технике.
1. Товарные и технологические свойства азотной кислоты
Безводная азотная кислота (моногидрат HNO3) представляет бесцветную жидкость с температурой кристаллизации -41,6°С, температурой кипения -- 82,6°С и плотностью -- 1,513 г/м3. Смешивается с водой во всех отношениях, образуя при этом индивидуальные соединения -- гидраты состава HNO3·Н2О и HNO3 · 3Н2О, которые дают три эвтектики (рис. 1.1).
Рис. 1.1 Диаграмма кристаллизации системы «HNO3 - NO2»
Температура кипения
водных растворов азотной кислоты
зависит от их концентрации. С увеличением
концентрации температура кипения
возрастает, достигая максимума 120,7°С
при азеотропном составе
Теплота разбавления
азотной кислоты водой
Рис. 1.2. Диаграмма кипения Рис. 1.3. Теплота разбавления
системы HNO3 - Н2О азотной кислоты
Скорость разложения возрастает с повышением концентрации; для 99%-ной кислоты температурный градиент составляет всего 5°С.
При нагревании процесс ускоряется и протекает по уравнению:
Выделяющийся оксид азота (IV) растворяется в кислоте и окрашивает ее в желто-оранжевый цвет. Для удаления оксида из кислоты в технологическом процессе ее производства предусмотрена операция «отбелки» кислоты.
При растворении оксида азота (IV) в кислоте образуется соединение состава HNO3·NO2 (нитроолеум), являющийся промежуточным продуктом в прямом синтезе азотной кислоты.
Азотная кислота корродирует и растворяет все металлы кроме золота, платины, титана, тантала, родия и иридия, однако в концентрированном виде пассивирует железо и его сплавы.
Области применения
азотной кислоты весьма разнообразны.
Большая часть ее (до 75--80%) расходуется
на производство азотных и комплексных
минеральных удобрений и
Рис. 1.4. Области применения азотной кислоты.
2. Сырье для производства азотной кислоты
В настоящее время в промышленных масштабах азотная кис-лота производится исключительно из аммиака. Поэтому структура сырья азотнокислотного производства совпадает со структурой сырья для производства аммиака, как это видно из рис. 2.1.
Рис. 2.1. Сырье для производства азотной кислоты.
В настоящее время основную массу азотной кислоты производят из синтетического аммиака, получаемого на основе конверсии природного газа. Аммиак, поступающий из цеха синтеза, содержит катализаторную пыль и пары компрессорного масла, являющиеся каталитическими ядами на стадии окисления аммиака. Поэтому аммиак подвергается тщательной очистке фильтрованием через матерчатые и керамические (поролитовые) фильтры и промывкой жидким аммиаком. Аналогично очищают от механических и химических примесей воздух, который поступает в цех через заборную трубу, устанавливаемую как правило, вдали от территории предприятия. Для очистки воздуха используются орошаемые водой скрубберы и матерчатые двухступенчатые фильтры.
3. Общая схема азотнокислотного производства
Существуют два способа производства азотной кислоты:
получение разбавленной
кислоты с последующим
непосредственное
получение концентрированной
Наиболее распространен
первый способ, что связано с использованием
в народном хозяйстве как
Первая стадия
процесса (конверсия аммиака) одинакова
как для получения
В то же время повышение давления оказывает и негативное влияние на экономические показатели работы агрегата. К ним относятся: ускорение побочных реакций на стадии окисления аммиака, снижение степени конверсии, потери катализатора вследствие его уноса потоком газа и необходимость частой замены его, что связано с остановкой производства.
Технико-экономический анализ показывает, что применение единого (повышенного) давления на всех стадиях производства целесообразно лишь в том случае, когда мощность установки не превышает 600--800 т/сутки. Установки большей мощности экономически выгодно создавать только с использованием разных давлений на стадии конверсии аммиака и стадии пере-работки нитрозных газов.
4. Физико-химические основы синтеза азотной кислоты из аммиака
4.1. Окисление аммиака до оксида азота (II)
При окислении аммиака кислородом воздуха на катализато-ре возможно протекание следующих реакций:
4NH3 + 502 = 4NO + 6Н20 - ?Н ?Н=907,3 кДж (1)
4NH3 + 402 = 2N20 + 6Н20 - ?Н ?Н = 1104,9 кДж (2)
4NH3 + 302 = 2N2 + 6Н20 - ?Н ?Н = 1269,1 кДж (3)
а также реакция с участием образующегося оксида азота (II):
4NH3 + 6NO = 5N2 + 6H20-?Н ?Н = 110кДж (4)
Все реакции практически необратимы, поэтому направление процесса окисления определяется соотношением скоростей реакций 1--4. Из трех основных реакций окисления аммиака (1 -- 3) реакция 3 термодинамически наиболее вероятна, так как протекает с максимальным выделением тепла. Поэтому, в отсутствии катализатора окисление аммиака идет преимущественно до элементарного азота. Для ускорения целевой реакции окисления до оксида азота (II) применяют селективно действующие катализаторы, В современных установках используют платиновые катализаторы в виде пакета сеток из сплава платины с 7,5% родия, или двухступенчатые катализаторы в виде слоя таблетированной смеси оксидов железа (III) и хрома (III). Введение родия повышает механическую прочность и уменьшает потери платины за счет ее уноса током газа. Поверхность подобных катализаторов достигает 1,5 м2/м3 объема.
Механизм гетерогенного
каталитического окисления
диффузия молекул аммиака и кислорода из газовой фазы к поверхности катализатора;
активированная адсорбция молекул кислорода на поверхности катализатора с образованием промежуточного соединения;
хемосорбция молекул
аммиака и образование
разложение комплекса с регенерацией катализатора и образованием молекул оксида азота (II) и воды;
диффузия продуктов
реакции с поверхности
Определяющей стадией всего процесса окисления является скорость диффузии кислорода к поверхности катализатора. Следовательно, каталитическое окисление аммиака на платиновом катализаторе протекает преимущественно в диффузионной области, в отличие от окисления на окисном катализаторе, которое идет в кинетической области.
Платиновые катализаторы весьма чувствительны к каталитическим ядам, содержащимся в аммиаке и воздухе, образующим аммиачно-воздушную смесь (АмВС). Фосфористый водород вызывает его необратимое, а ацетилен, сероводород и органические соединения серы обратимое отравление. Так как вследствие этого активность катализатора снижается, его периодически регенерируют промывкой соляной или азотной кислотой.
В процессе работы поверхность катализатора разрушается и частицы его уносятся с потоком газа. Эррозия катализатора тем больше, чем выше температура, давление и объемная скорость газа, проходящего через катализатор. Для систем, работающих под высоким давлением, унос катализатора составляет 0,3--0,4 г на 1 тонну азотной кислоты.
В присутствии платиновых катализаторов селективность процесса окисления аммиака до оксида азота (II):
(5)
составляет 0,95--0,98 дол, ед. В этих условиях скорость окисления до оксида азота (II) описывается уравнением:
(6)
где: -- парциальное давление аммиака, окисляемого до оксида азота (II),
-- парциальное давление аммиака, окисляемого до оксида азота (I) и элементарного азота (реакции2иЗ),
к -- константа скорости.
Энергия активации этой реакции составляет 33,494 кДж/ моль.
Из двух реакций (2 и 3), конкурирующих с целевой реакцией окисления аммиака (1), н