Автор работы: Пользователь скрыл имя, 27 Мая 2015 в 12:17, курсовая работа
Проект улавливания бензольных углеводородов из газа производительностью 80000 м3 по газу
Цель задачи: – анализ различных способов улавливания бензольных углеводородов;
– расчет оборудования при увеличении нагрузки на коксовый газ;
– пути повышения эффективности улавливания;
– определение технико–экономических показателей.
На коксохимических заводах получают сырой бензол трех марок: сырой бензол (БС), отгон до 180 °С составляет 91—95 % (объемн.); первый бензол (Б-1), отгон до 150 °С составляет 95—97 % (объемн.) и второй бензол (Б-2), кипящий в пределах 150—200 °С. Качество сырого бензола нормируется техническими условиями.
Характеристика сырого бензола марок БС, Б-1, Б-2:
БС
Б-1
Б-2
Плотность при 20°С, кг/м³
870-920
873
927
Начало кипения, °С
73
74,5
139
Отгон, %, до температуры, °С
100
62
81
-
120
82
92
-
150
89
98
9,5
180
94
-
92
200
-
-
98
Сырой бензол сам по себе не находит практического применения и подвергается дальнейшей переработке в цехе ректификации для получения чистых продуктов.
Состав и свойства коксового газа
В процессе высокотемпературного коксования угольных шихт в коксовой камере наряду с коксом образуются летучие химические продукты, представляющие собой сложную неоднородную систему, состоящую из газообразных и парообразных веществ, являющихся продуктом термического разложения каменных углей. Основными летучими продуктами высокотемпературного коксования являются: коксовый газ, пирогенетическая вода, нафталин, аммиак, сероводород (и др. сернистые соединения), цианистые соединения, бензольные углеводороды (сырой бензол), высокотемпературная каменноугольная смола и др.
Смесь паро и газообразных продуктов коксования, выходящих из коксовых камер в газосборники, образует так называемый прямой коксовый газ. Он содержит следующие количества химических продуктов, г/м³:
Пары воды (пирогенетической и влаги шихты) 250 – 450
Пары смолы 80 – 150
Бензольные углеводороды 30 – 40
Аммиак 8 – 13
Нафталин до 10
Сероводород 6 – 40
Цианистый водород 0,5 – 2,5
Кроме того, в состав прямого коксового газа входят сероуглерод (СS2 ) сероксид углерода (СОS), тиофен (C4 H4 S) и его гомологи, легкие пиридиновые основания (0,4 – 0,6 г/м3 ), фенолы и др.
При обработке прямого коксового газа в аппаратуре цеха улавливания из него выделяются основные химические продукты коксования, и образуется очищенный коксовый газ. Он называется обратным, потому что часть его подаётся на обогрев коксовых печей, как бы возвращается обратно.
Обратный коксовый газа состоит в основном из неконденсирующихся в обычных условиях компонентов (Н2 , СН4 , СО, СО2 , , О2 и др.), а также остатков сероводорода, бензольных углеводородов, углеводородов непредельного ряда, незначительных количеств оксидов азота др.
Выход отдельных химических продуктов высокотемпературного коксования из 1 т сухой шихты колеблется в пределах, %:
Коксовый газ (обратный, сухой) 14 – 16
Каменноугольная смола 3 – 4,0
Пирогенетическая влага 1,8 – 3,0
Сырой бензол 0,8 – 1,2
Сероводород 0,5 – 2,5
Аммиак.0,26 – 0,4
Средний состав обратного коксового газа в % (объёмн.):
Водород 60
Метан 26
Угарный газ 6
Азот 2,7
Углекислый газ 2,6
Непредельные углеводороды 2,2
Кислород 0,5
Физико – химические свойства коксового газа среднего состава:
Плотность при 0°С 0,440 кг/м3
Низшая теплота сгорания 4350 ккал/м3
Теплоёмкость при 0°С 0,328 ккал/м3 *°С
Динамическая вязкость при 0°С 1*10-6 кг/м*с
Температура воспламенения 600–650°C
Пределы взрываемости: Нижний 6% Верхний 30%
2.2 Расчет абсорбционной установки
Улавливание бензольных углеводородов из коксового газа каменноугольным маслом представляет собой процесс многокомпонентной абсорбции, когда из газа одновременно поглощается смесь компонентов – бензол, толуол, ксилол и сольвенты. Инертная часть коксового газа состоит из многих компонентов – Н2 , СН4 , СО, N2 , СО2 , О2 , NH3 , Н2 и др. сложным является и состав каменноугольного масла, представляющего собой смесь ароматических углеводородов (двух- и трехкольчатых) и гетероциклических соединений с примесью фенолов. Для упрощения приведенных ниже расчетов газовая смесь и поглотитель рассчитываются как бинарные, состоящие из распределяемого компонента (бензольные углеводороды) и инертной части (носителей); физические свойства их приняты осредненными.
Для линеаризации уравнения рабочей линии абсорбции составы фаз выражают в относительных концентрациях распределяемого компонента, а нагрузки по фазам – в расходах инертного носителя. В приведенных ниже расчетах концентрации выражены в относительных массовых долях распределяемого компонента, а нагрузки – в массовых расходах носителей.
Материальный баланс
В бензольные скрубберы поступает из конечных газовых холодильников газ следующего состава:
Состав
кг/ч
м³/ч
сухой коксовый газ
33783,08
76370,4
водяные пары
1804,16
2255,2
бензольные углеводороды
2315,8
626,4
сероводород
1136,96
748
итого
39040
80000
Температура поступаемого газа 25ºС и давление 847 мм. рт. ст. принимаем потери бензольных углеводородов с выходящим газом, равным 1,167 г/м³ сухого газа, что составляет
кг/ч
тогда степень улавливания
или 96%
Количество поглощаемых бензольных углеводородов:
G=2315,8 – 92,632 =2223,168 кг/ч
Таким образом, из скрубберов выходит:
Состав
кг/ч
м³/ч
сухой коксовый газ
33783,08
76370,4
водяные пары
1804,16
2255,2
бензольные углеводороды
92,632
25,056
сероводород
1136,96
748
итого
36816,8
79398,656
Фактическое содержание бензольных углеводродов в поступающем газе:
г/м3
и выходящем газе:
г/м3
где 825-давление газа после бензольных скрубберов, мм рт ст
847-давление газа до бензольных скрубберов, мм рт ст
303-температура газа после скруббера, ºК
Максимальное содержание бензольных углеводородов в поступающем масле определяем по уравнению:
где a2-содержание бензольных углеводородов в выходящем газе
a2=1,91гр/м³
p2=825 мм рт ст
Mn-молекулярная масса поглотителя 170
Pω-упругость паров бензольных углеводородов над поступающим маслом, мм рт ст
Для определения упругости бензольных углеводородов над поступающим маслом принимаем следующий состав сырого бензола:
бензола 73%, ксилолов 5%, толуола 21%, сольвентов 1%
При t=30ºC упругость: бензол 118,4
толуол 39,5
ксилол 23,5
сольвент 5
Средняя молекулярная масса сырого бензола:
Молекулярная доля компонентов в сыром бензоле:
где 78,92,106,120-молекулярные массы компонентов.
Тогда упругость бензольных углеводородов при 30ºС: Рсб в поглотительном масле:
Действительное содержание С должно быть менее равновесным для создания движущей силы абсорбции вверху скруббера:
n - коэффициент сдвига равновесия, который можно принять равным 1,1-1,2
Максимальное содержание бензольных углеводородов в выходящем из скрубберов масле при условии равновесия внизу скруббера определяем по уравнению:
Для сдвига равновесия внизу абсорбера принимаем коэффициент сдвига равновесия n=1.5, тогда
Минимальное количество поглотителя:
L min =
Действительное количество поглотителя:
L =
Что составит на 1м³ сухого газа:
Таким образом, в поступающем масле содержатся бензольных углеводородов:
99314·
и в выходящем:
99314·2,22/100=2205 кг/ч
Следовательно, поглощается маслом бензольных углеводородов:
2205-178=2027 кг/ч
материальный баланс скрубберов, кг/ч
Компоненты
Приход
Расход
коксовый газ
37506
35479
поглотительное масло
99314
99314
бензольные углеводороды
178
2205
Итого
136998
136998
Определение поверхности абсорбции и размеров скрубберов
Для скрубберов принимаем деревянную хордовую насадку со следующей характеристикой:
толщина рейки…………… а = 0,01 м =10мм;
зазоры между ними……… в = 0,02 = 20мм
высота рейки……………… с = 120мм
Критическая скорость газа определяется уравнением:
U=2.32
Вязкость коксового газа при Т = 30ºС Z=0.0127 спз
Плотность газа на выходе:
p =
dэ=2b=2·0,02=0,04м.
критическая скорость газа:
U=2.32 ·
Требуемое живое сечение насадки:
Sж =
Где V-фактический объем газа на выходе из скруббера.
V=74452.4 ·
Отсюда:
Sж =
Общее сечение насадки скруббера:
S общ =
и диаметр скруббера:
Д=
Поверхность абсорбции определяется уравнением:
F=
Где G-количество поглощенных бензольных углеводородов, кг/ч;
∆pср - средняя движущая сила абсорбции.
К- коэффициент абсорбции, кг/(м²·ч·мм рт ст)
Движущая сила абсорбции вверху скруббера:
где -парциальное давление бензольных углеводородов в выходящем газе.
=0.0224 · =0.418 мм.рт.ст.
мм.рт.ст.
Тогда
∆p2=0.418-0.363=0.055 мм.рт.ст.
Движущая сила абсорбции внизу скруббера:
где pг - парциальное давление бензольных углеводородов в поступающем газе.
=0,0224·
мм.рт.ст.
средняя движущая сила абсорбции:
коэффициент абсорбции определяется:
K=
Где Кг-коэффициент массоотдачи при абсорбции через газовую пленку.
Плотность газа на входе
и плотность газа на выходе:
Средняя плотность газа:
и при фактических условиях:
тогда:
Uг =
Коэффициент диффузии бензольных углеводородов в коксовом газе Дr при нормальных условиях:
Дr=
Мr-молекулярная масса коксового газа
Мr=22,4·0,488=11, тогда
Дr=
Pср=825+ мм. рт. ст. T=300ºK
Приводим коэффициент диффузии к фактическим условиям:
Число Нуссельта
Число Рейнольдса
Число Прандтля
таким образом
и коэффициент массоотдачи через газовую пленку
или
коэффициенты массоотдачи при абсорбции через жидкую пленку:
Число Рейнольдса для поглотителя
орошения м³/(м·ч)
Uж-кинематическая вязкость поглотителя, м²/ч
qж=
где L-количество поглотителя, кг/ч pж- плотность поглотителя, U- периметр сбегания поглотителя в одном круге насадки, м
Периметр сбегания жидкости в одном круге насадки: где L- длинна реек в одном круге
U-периметр сбегания жидкости в одном круге насадки
Вязкость поглотительного масла при t=30ºC равна 16,5 спз, что в пересчете на кинематическую вязкость составит:
или
тогда
Число Прандтля для поглотителя:
Коэффициент диффузии бензольных углеводородов в поглотительном масле при 30ºС равен Дж=0,14·10 м
Тогда,
Отсюда коффициент массотдачи через жидкостную пленку:
Для пересчета на движущую силу абсорбции в мм.рт.ст. необходимо полученное значение делить на константу равновесия Генри.
Н-упругость Генри (мм. рт. ст ·м³)/кг
тогда константа Генри будет равна
над входящим газом
таким образом,
отсюда коэффициент массопередачи будет равен:
Необходимая поверхность абсорбции:
или на 1м³ сухого коксового газа
Поверхность круга насадки:
где U-периметр сбегания жидкости по насадке
C-высота рейки насадки 0,1м
Необходимое число кругов насадки.
Принимаем три скруббера по 240 кругов и в каждом скруббере по 24 круга. Считая расстояние между секциями 0,5м, высоту опорных реек 0,12 м и расстояние от верха насадки до крышки и от низа насадки до дна 5 м, получим общую высоту скруббера.
Механический расчет. Подбор толщины обечайки
Расчет толщины обечаек проводят в соответствии с ГОСТ-14249-80.
Исполнительную толщину гладкой тонкостенной цилиндрической обечайки, рассчитывают по формуле:
где Д-диаметр скруббера,
p- давление внутри скруббера, МПа
φ-коэффициент прочности сварных швов, φ=1
с-исполнительная толщина стенки элементов, с=0,02мм
Принимаем диаметр из стандартного ряда p=0.160 МПа
Допускаемое напряжение в рабочем состоянии при расчетной температуре 20ºС δ=140 МПа
Расчет толщины днища
Толщину стенки днища определяют
где
Принимаем днище эллиптическое отбортованное стальное по ГОСТ-6533-68
Дв, мм
hв, мм
Fв, м²
емк. V·10
5000
500
4,5
1124
Расчет и подбор диаметров штуцеров
Принимаем диаметр штуцеров для входа и выхода коксового газа 1,500 м
Материал штуцеров сталь марок 08 и 10.
Где ω = 15 м/с принятая скорость коксового газа в трубопроводе.
Для входа и выхода поглотительного масла:
где- ρ плотность поглотительного масла 1060 кг/м³
ω - маловязкие жидкости 0,5-1,0м/с
Принимаем диаметр штуцеров для входа и выхода поглотительного масла Д = 0,200 м Подбор фланцевых соединений
Принимаем фланцы плоские стальные приварные Тип 1 по ГОСТ1255-54
Присоединительные размеры, мм
Болты, шт
Тип фланца
Рy, мн/м²
Дв, мм
Д, мм
Дб, мм
Д1,мм
Д
dσ
z
h,мм
1,500
1500
1640
1590
1560
1513
М20
32
25
Присоединительные размеры, мм
Болты, шт
Тип фланца
Py, мн/м²
Дy
Дн
Д
Дб
Д1
d
z
h,мм
0,2
200
219
290
255
232
М16
8
22
3. ЭКОЛОГИЧНОСТЬ И БЕЗОПАСНОСТЬ РАЗРАБОТКИ
3.1 Экологичность проекта
Наиболее существенными источниками загрязнения воздушного бассейна в цехе улавливания являются градирни конечного охлаждения коксового газа. Выделение газов из – за недостаточной герметичности оборудования, фланцевых соединений трубопроводов и газопроводов, случайные разливы жидких продуктов, выбросы газов из воздушек технологического оборудования выбросы из сборников продукции также загрязняют атмосферу.
Для обеспечения безопасной работы и защиты окружающей среды в цехе улавливания химических продуктов коксования необходимо выполнять следующие правила:
- соблюдать технологический режим, установленный настоящей инструкцией;
- соблюдать правила и
требования, предъявляемые правилами
безопасности в
- обслуживание оборудования
цеха осуществлять согласно