Проект улавливания бензольных углеводородов из газа производительностью 80000 м3 по газу

Автор работы: Пользователь скрыл имя, 27 Мая 2015 в 12:17, курсовая работа

Краткое описание

Проект улавливания бензольных углеводородов из газа производительностью 80000 м3 по газу
Цель задачи: – анализ различных способов улавливания бензольных углеводородов;
– расчет оборудования при увеличении нагрузки на коксовый газ;
– пути повышения эффективности улавливания;
– определение технико–экономических показателей.

Прикрепленные файлы: 1 файл

Дипломная работа на тему.docx

— 55.14 Кб (Скачать документ)

На коксохимических заводах получают сырой бензол трех марок: сырой бензол (БС), отгон до 180 °С составляет 91—95 % (объемн.); первый бензол (Б-1), отгон до 150 °С составляет 95—97 % (объемн.) и второй бензол (Б-2), кипящий в пределах 150—200 °С. Качество сырого бензола нормируется техническими условиями.

Характеристика сырого бензола марок БС, Б-1, Б-2:

БС

Б-1

Б-2

Плотность при 20°С, кг/м³

870-920

873

927

Начало кипения, °С

73

74,5

139

Отгон, %, до температуры, °С

100

62

81

-

120

82

92

-

150

89

98

9,5

180

94

-

92

200

-

-

98

Сырой бензол сам по себе не находит практического применения и подвергается дальнейшей переработке в цехе ректификации для получения чистых продуктов.

Состав и свойства коксового газа

В процессе высокотемпературного коксования угольных шихт в коксовой камере наряду с коксом образуются летучие химические продукты, представляющие собой сложную неоднородную систему, состоящую из газообразных и парообразных веществ, являющихся продуктом термического разложения каменных углей. Основными летучими продуктами высокотемпературного коксования являются: коксовый газ, пирогенетическая вода, нафталин, аммиак, сероводород (и др. сернистые соединения), цианистые соединения, бензольные углеводороды (сырой бензол), высокотемпературная каменноугольная смола и др.

Смесь паро и газообразных продуктов коксования, выходящих из коксовых камер в газосборники, образует так называемый прямой коксовый газ. Он содержит следующие количества химических продуктов, г/м³:

Пары воды (пирогенетической и влаги шихты) 250 – 450

Пары смолы 80 – 150

Бензольные углеводороды 30 – 40

Аммиак 8 – 13

Нафталин до 10

Сероводород 6 – 40

Цианистый водород 0,5 – 2,5

Кроме того, в состав прямого коксового газа входят сероуглерод (СS2 ) сероксид углерода (СОS), тиофен (C4 H4 S) и его гомологи, легкие пиридиновые основания (0,4 – 0,6 г/м3 ), фенолы и др.

При обработке прямого коксового газа в аппаратуре цеха улавливания из него выделяются основные химические продукты коксования, и образуется очищенный коксовый газ. Он называется обратным, потому что часть его подаётся на обогрев коксовых печей, как бы возвращается обратно.

Обратный коксовый газа состоит в основном из неконденсирующихся в обычных условиях компонентов (Н2 , СН4 , СО, СО2 , , О2 и др.), а также остатков сероводорода, бензольных углеводородов, углеводородов непредельного ряда, незначительных количеств оксидов азота др.

Выход отдельных химических продуктов высокотемпературного коксования из 1 т сухой шихты колеблется в пределах, %:

Коксовый газ (обратный, сухой) 14 – 16

Каменноугольная смола 3 – 4,0

Пирогенетическая влага 1,8 – 3,0

Сырой бензол 0,8 – 1,2

Сероводород 0,5 – 2,5

Аммиак.0,26 – 0,4

Средний состав обратного коксового газа в % (объёмн.):

Водород 60

Метан 26

Угарный газ 6

Азот 2,7

Углекислый газ 2,6

Непредельные углеводороды 2,2

Кислород 0,5

Физико – химические свойства коксового газа среднего состава:

Плотность при 0°С 0,440 кг/м3

Низшая теплота сгорания 4350 ккал/м3

Теплоёмкость при 0°С 0,328 ккал/м3 *°С

Динамическая вязкость при 0°С 1*10-6 кг/м*с

Температура воспламенения 600–650°C

Пределы взрываемости: Нижний 6% Верхний 30%

2.2 Расчет абсорбционной  установки

Улавливание бензольных углеводородов из коксового газа каменноугольным маслом представляет собой процесс многокомпонентной абсорбции, когда из газа одновременно поглощается смесь компонентов – бензол, толуол, ксилол и сольвенты. Инертная часть коксового газа состоит из многих компонентов – Н2 , СН4 , СО, N2 , СО2 , О2 , NH3 , Н2 и др. сложным является и состав каменноугольного масла, представляющего собой смесь ароматических углеводородов (двух- и трехкольчатых) и гетероциклических соединений с примесью фенолов. Для упрощения приведенных ниже расчетов газовая смесь и поглотитель рассчитываются как бинарные, состоящие из распределяемого компонента (бензольные углеводороды) и инертной части (носителей); физические свойства их приняты осредненными.

Для линеаризации уравнения рабочей линии абсорбции составы фаз выражают в относительных концентрациях распределяемого компонента, а нагрузки по фазам – в расходах инертного носителя. В приведенных ниже расчетах концентрации выражены в относительных массовых долях распределяемого компонента, а нагрузки – в массовых расходах носителей.

Материальный баланс

В бензольные скрубберы поступает из конечных газовых холодильников газ следующего состава:

Состав

кг/ч

м³/ч

сухой коксовый газ

33783,08

76370,4

водяные пары

1804,16

2255,2

бензольные углеводороды

2315,8

626,4

сероводород

1136,96

748

итого

39040

80000

Температура поступаемого газа 25ºС и давление 847 мм. рт. ст. принимаем потери бензольных углеводородов с выходящим газом, равным 1,167 г/м³ сухого газа, что составляет

 кг/ч

 

тогда степень улавливания

 

или 96%

Количество поглощаемых бензольных углеводородов:

G=2315,8 – 92,632 =2223,168 кг/ч

Таким образом, из скрубберов выходит:

Состав

кг/ч

м³/ч

сухой коксовый газ

33783,08

76370,4

водяные пары

1804,16

2255,2

бензольные углеводороды

92,632

25,056

сероводород

1136,96

748

итого

36816,8

79398,656

Фактическое содержание бензольных углеводродов в поступающем газе:

 г/м3

и выходящем газе:

 г/м3

где 825-давление газа после бензольных скрубберов, мм рт ст

847-давление газа до  бензольных скрубберов, мм рт ст

303-температура газа после  скруббера, ºК

Максимальное содержание бензольных углеводородов в поступающем масле определяем по уравнению:

 

где a2-содержание бензольных углеводородов в выходящем газе

a2=1,91гр/м³

p2=825 мм рт ст

Mn-молекулярная масса поглотителя 170

Pω-упругость паров бензольных углеводородов над поступающим маслом, мм рт ст

Для определения упругости бензольных углеводородов над поступающим маслом принимаем следующий состав сырого бензола:

бензола 73%, ксилолов 5%, толуола 21%, сольвентов 1%

При t=30ºC упругость: бензол 118,4

толуол 39,5

ксилол 23,5

сольвент 5

Средняя молекулярная масса сырого бензола:

 

Молекулярная доля компонентов в сыром бензоле:

 

 

 

 

 

где 78,92,106,120-молекулярные массы компонентов.

Тогда упругость бензольных углеводородов при 30ºС: Рсб в поглотительном масле:

 

Действительное содержание С должно быть менее равновесным для создания движущей силы абсорбции вверху скруббера:

 

n - коэффициент сдвига  равновесия, который можно принять  равным 1,1-1,2

Максимальное содержание бензольных углеводородов в выходящем из скрубберов масле при условии равновесия внизу скруббера определяем по уравнению:

 

 

Для сдвига равновесия внизу абсорбера принимаем коэффициент сдвига равновесия n=1.5, тогда

 

Минимальное количество поглотителя:

L min =

Действительное количество поглотителя:

L =

Что составит на 1м³ сухого газа:

Таким образом, в поступающем масле содержатся бензольных углеводородов:

99314·

и в выходящем:

99314·2,22/100=2205 кг/ч

Следовательно, поглощается маслом бензольных углеводородов:

 

2205-178=2027 кг/ч

материальный баланс скрубберов, кг/ч

Компоненты

Приход

Расход

коксовый газ

37506

35479

поглотительное масло

99314

99314

бензольные углеводороды

178

2205

Итого

136998

136998

Определение поверхности абсорбции и размеров скрубберов

Для скрубберов принимаем деревянную хордовую насадку со следующей характеристикой:

толщина рейки…………… а = 0,01 м =10мм;

зазоры между ними……… в = 0,02 = 20мм

высота рейки……………… с = 120мм

Критическая скорость газа определяется уравнением:

U=2.32

Вязкость коксового газа при Т = 30ºС Z=0.0127 спз

Плотность газа на выходе:

p =

dэ=2b=2·0,02=0,04м.

критическая скорость газа:

U=2.32 · 

 

Требуемое живое сечение насадки:

Sж =

Где V-фактический объем газа на выходе из скруббера.

V=74452.4 · 

Отсюда:

Sж =

Общее сечение насадки скруббера:

S общ =

и диаметр скруббера:

Д=

Поверхность абсорбции определяется уравнением:

F=

Где G-количество поглощенных бензольных углеводородов, кг/ч;

∆pср - средняя движущая сила абсорбции.

К- коэффициент абсорбции, кг/(м²·ч·мм рт ст)

Движущая сила абсорбции вверху скруббера:

 

где -парциальное давление бензольных углеводородов в выходящем газе.

 

=0.0224 · =0.418 мм.рт.ст.

мм.рт.ст.

Тогда

∆p2=0.418-0.363=0.055 мм.рт.ст.

Движущая сила абсорбции внизу скруббера:

 

где pг - парциальное давление бензольных углеводородов в поступающем газе.

=0,0224·

 

 

 

 

 

мм.рт.ст.

средняя движущая сила абсорбции:

 

коэффициент абсорбции определяется:

K=

Где Кг-коэффициент массоотдачи при абсорбции через газовую пленку.

Плотность газа на входе

 

и плотность газа на выходе:

 

 

Средняя плотность газа:

 

и при фактических условиях:

 

тогда:

Uг =

Коэффициент диффузии бензольных углеводородов в коксовом газе Дr при нормальных условиях:

Дr=

Мr-молекулярная масса коксового газа

Мr=22,4·0,488=11, тогда

Дr=

Pср=825+ мм. рт. ст. T=300ºK

 

Приводим коэффициент диффузии к фактическим условиям:

 

 

Число Нуссельта

 

Число Рейнольдса

 

Число Прандтля

 

таким образом

 

и коэффициент массоотдачи через газовую пленку

 

 

 

или

 

 

коэффициенты массоотдачи при абсорбции через жидкую пленку:

 

Число Рейнольдса для поглотителя

 орошения м³/(м·ч)

Uж-кинематическая вязкость поглотителя, м²/ч

qж=

где L-количество поглотителя, кг/ч pж- плотность поглотителя,  U- периметр сбегания поглотителя в одном круге насадки, м

Периметр сбегания жидкости в одном круге насадки: где L- длинна реек в одном круге

 

 

 

U-периметр сбегания жидкости  в одном круге насадки

 

Вязкость поглотительного масла при t=30ºC равна 16,5 спз, что в пересчете на кинематическую вязкость составит:

 

 

или

 

тогда

 

Число Прандтля для поглотителя:

 

Коэффициент диффузии бензольных углеводородов в поглотительном масле при 30ºС равен Дж=0,14·10 м

Тогда,

 

 

 

Отсюда коффициент массотдачи через жидкостную пленку:

 

 

Для пересчета на движущую силу абсорбции в мм.рт.ст. необходимо полученное значение  делить на константу равновесия Генри.

 

Н-упругость Генри (мм. рт. ст ·м³)/кг

 

 

тогда константа Генри будет равна

 

 

над входящим газом

 

 

таким образом,

 

отсюда коэффициент массопередачи будет равен:

 

Необходимая поверхность абсорбции:

 

или на 1м³ сухого коксового газа

 

 

Поверхность круга насадки:

 

где U-периметр сбегания жидкости по насадке

C-высота рейки насадки 0,1м

Необходимое число кругов насадки.

 

Принимаем три скруббера по 240 кругов и в каждом скруббере по 24 круга. Считая расстояние между секциями 0,5м, высоту опорных реек 0,12 м и расстояние от верха насадки до крышки и от низа насадки до дна 5 м, получим общую высоту скруббера.

 

Механический расчет. Подбор толщины обечайки

Расчет толщины обечаек проводят в соответствии с ГОСТ-14249-80.

Исполнительную толщину гладкой тонкостенной цилиндрической обечайки, рассчитывают по формуле:

 

 

где Д-диаметр скруббера,

p- давление внутри скруббера, МПа

 

φ-коэффициент прочности сварных швов, φ=1

с-исполнительная толщина стенки элементов, с=0,02мм

Принимаем диаметр из стандартного ряда p=0.160 МПа

Допускаемое напряжение в рабочем состоянии при расчетной температуре 20ºС δ=140 МПа

 

Расчет толщины днища

Толщину стенки днища определяют

 

 

где

 

 

Принимаем днище эллиптическое отбортованное стальное по ГОСТ-6533-68

Дв, мм

hв, мм

Fв, м²

емк. V·10

5000

500

4,5

1124

 

Расчет и подбор диаметров штуцеров

 

Принимаем диаметр штуцеров для входа и выхода коксового газа 1,500 м

Материал штуцеров сталь марок 08 и 10.

Где ω = 15 м/с принятая скорость коксового газа в трубопроводе.

Для входа и выхода поглотительного масла:

 

 

где- ρ плотность поглотительного масла 1060 кг/м³

ω - маловязкие жидкости 0,5-1,0м/с

Принимаем диаметр штуцеров для входа и выхода поглотительного масла Д = 0,200 м Подбор фланцевых соединений

Принимаем фланцы плоские стальные приварные Тип 1 по ГОСТ1255-54

Присоединительные размеры, мм

Болты, шт

Тип фланца

Рy, мн/м²

Дв, мм

Д, мм

Дб, мм

Д1,мм

Д

z

h,мм

1,500

1500

1640

1590

1560

1513

М20

32

25

 

Присоединительные размеры, мм

Болты, шт

Тип фланца

Py, мн/м²

Дy

Дн

Д

Дб

Д1

d

z

h,мм

0,2

200

219

290

255

232

М16

8

22

 

3. ЭКОЛОГИЧНОСТЬ И БЕЗОПАСНОСТЬ  РАЗРАБОТКИ

3.1 Экологичность проекта

Наиболее существенными источниками загрязнения воздушного бассейна в цехе улавливания являются градирни конечного охлаждения коксового газа. Выделение газов из – за недостаточной герметичности оборудования, фланцевых соединений трубопроводов и газопроводов, случайные разливы жидких продуктов, выбросы газов из воздушек технологического оборудования выбросы из сборников продукции также загрязняют атмосферу.

Для обеспечения безопасной работы и защиты окружающей среды в цехе улавливания химических продуктов коксования необходимо выполнять следующие правила:

- соблюдать технологический  режим, установленный настоящей  инструкцией;

- соблюдать правила и  требования, предъявляемые правилами  безопасности в коксохимическом  производстве;

- обслуживание оборудования  цеха осуществлять согласно производственно – технических инструкций по безопасности труда, утвержденных главным инженером коксохимпроизводства;

Информация о работе Проект улавливания бензольных углеводородов из газа производительностью 80000 м3 по газу