Пробоподготовка и её роль в обеспечении единства измерений

Автор работы: Пользователь скрыл имя, 05 Апреля 2014 в 21:22, контрольная работа

Краткое описание

Измерения физических величин, опирающихся на моль как на основную единицу, - физико-химические измерения - рассматриваются как измерения состава веществ, материалов и изделий. Так же, как в физико-технических или радиотехнических измерениях, в физико-химических измерениях достаточно много собственных специфических подходов к процессам измерения. В физико-химических измерениях используется самая разнообразная измерительная техника: механические, электромагнитные, тепловые, оптические приборы. Основанием этого является принцип определения состава вещества (физико-химия) через его свойства - механические, электрические, тепловые, оптические.

Прикрепленные файлы: 1 файл

Метрология.doc

— 80.00 Кб (Скачать документ)

СЕВЕРО-ЗАПАДНЫЙ ИНСТИТУТ ПЕЧАТИ

Санкт-Петербургского государственного университета технологии и дизайна

Факультет Полиграфических технологий и оборудования

Специальность 261202 Технология полиграфического производства

Кафедра Технология полиграфического производства (ТПП)

КОНТРОЛЬНАЯ РАБОТА № 1

по дисциплине: Метрология, стандартизация и сертификация

на тему: Пробоподготовка и её роль в обеспечении единства измерений

 

Выполнил студент 4 курса, группы Тз-08

Кудрявцева Анастасия Борисовна,

Тз-04/08, Лен. обл., г. Гатчина, ул. 7 Армии, д. 23, кв. 57

Проверил:

 

Санкт-Петербург

2011 г.

Измерения физических величин, опирающихся на моль как на основную единицу, - физико-химические измерения - рассматриваются как измерения состава веществ, материалов и изделий. Так же, как в физико-технических или радиотехнических измерениях, в физико-химических измерениях достаточно много собственных специфических подходов к процессам измерения. В физико-химических измерениях используется самая разнообразная измерительная техника: механические, электромагнитные, тепловые, оптические приборы. Основанием этого является принцип определения состава вещества (физико-химия) через его свойства - механические, электрические, тепловые, оптические. Существенным отличием, например, чисто механических измерений от физико-химических через механические свойства является обязательный этап пробоподготовки и стандартизация методики измерения, необходимые в определении состава вещества. Пробоподготовка и методика измерения, соответственно, могут и должны рассматриваться как часть измерительного процесса.

 

 

ФИЗИКО-ХИМИЧЕСКИЕ ИЗМЕРЕНИЯ

Особенности измерения состава веществ и материалов

Под физико-химическими измерениями в системе Госстандарта РФ принято понимать все измерения, связанные с контролем состава веществ, материалов и изделий. Измерения химического состава веществ могут проводиться самими различными методами, поскольку в измерительном процессе в большинстве случаев измеряется какое-либо свойство материала, а затем состав находят из связи состав-свойство. Таким свойством могут быть механические свойства, электромеханические, тепловые, оптические. Из этого следует, что физико-химические измерения опираются в сути своей на уже рассмотренные виды измерений.

Основной отличительной особенностью физико-химических измерений является важная роль процесса подготовки пробы к анализу. При хранении пробы, при ее транспортировке от места забора к аналитическому прибору и в самом процессе анализа возможны самые разнообразные трансформации состава. К таким трансформациям могут привести изменения температурного режима, изменения влажности, давления. Важным моментом является так называемое влияние третьей компоненты на результат анализа. В химии хорошо известен каталитический эффект — т. е. влияние на скорость химических реакций веществ, не участвующих в химических превращениях, но изменяющих скорость их протекания, а в ряде случаев определяющих конечный результат химической реакции.

По этой причине нельзя отождествлять, например, собственно измерения теплопроводности газов и анализ состава газовых смесей на хроматографе с детектором теплопроводности. То же самое относится к другому распространенному виду физико-химических измерений — масс-спектрометрам. Эти приборы являются средством измерения массы по траектории движения ионов различной массы в магнитном поле.

Указанная особенность физико-химических измерений приводит к двум очень важным моментам. Первое — физико-химические измерения в сути своей используют весь арсенал приборов и методов из других видов измерения. И второе — в физико-химических измерениях очень большое значение имеет стандартизация методики измерений — последовательности действий, включая забор пробы, хранение, транспортировку, подготовку пробы к анализу, получение аналитического сигнала и обработку результатов измерений. В ряде случаев необходимая информация о составе вещества может быть получена только с использованием измерения нескольких свойств, например, массы и теплопроводности или массы и показателя преломления.

Характерным примером важности процесса пробоподготовки в аналитических измерениях является хроматография. В измерительной технике хроматографы занимают достойное место среди других приборов. Тем не менее, хроматография не является методом измерения, а скорее есть способ пробоподготовки, позволяющий транспортировать к измерительному устройству различные компоненты смесей веществ в разные моменты времени. В зависимости от типа детектора хроматограф может быть механическим, тепловым, электроизмерительным или оптическим прибором.

Возможность определять состав веществ и материалов по различным свойствам отражается на методах оценки систематических погрешностей. В самом деле, использование различных уравнений измерения для определения одной и той же величины, например концентрации какого-либо компонента в смеси газов, жидкостей или твердых тел позволяет с большей степенью достоверности определять состав вещества.

Все аналитические методы можно разделить по способу подготовки пробы на два класса — элементный анализ, в котором определяется состав вещества по элементам периодической системы, и анализ по компонентам, в котором измеряемые составляющие вещества ни во время подготовки пробы, ни в процессе анализа на элементы не разлагаются.

По физическим свойствам анализируемой среды физико-химические измерения делятся на анализ состава газов, анализ состава жидкостей и анализ состава твердых тел. Особое место в таком подходе занимает гигрометрия — определение содержания воды в газах в виде паров, в жидкостях в виде капельной влаги и в твердых телах в виде кристаллизационной воды.

Еще одной отличительной особенностью физико-химических измерений является разнообразие методов и приборов для определения микроконцентраций и макроконцентраций одного и того же компонента в определенной среде. Под этим термином здесь подразумевается, что в зависимости от относительного содержания компонента в смеси нужно использовать в ряде случаев совершенно разные подходы. По грубым оценкам в газе в 1 см3 содержится приблизительно 2,6×1019 частиц. В жидкости и в твердом теле это значение на несколько порядков больше. Соответственно, для решения всевозможных задач измерения содержания определенного вещества во всевозможных смесях необходимо иметь прибор для измерения величин, изменяющихся в 1019-1023 раз. Для большинства компонентов эта задача трудноразрешима. В самом деле, для реализации такого анализатора необходимо с одной стороны иметь счетчик отдельных частиц, а с другой стороны иметь средство измерения сверхчистого вещества с уровнем примесей 10-19-10-23. Очевидно, что подобные измерения представляют собой совершенно разные задачи и решать их если и возможно, то с использованием совершенно разных подходов. Практическая необходимость создания сверхчистых материалов привела к тому, что для ряда конкретных задач подобные методы и приборы были созданы.

 

 

Измерения влажности веществ и материалов

Влажность и содержание молекул воды в веществах и материалах являются одним из наиболее важных характеристик состава. Влагу необходимо измерять в газах (концентрация паров воды), в смесях жидкостей (собственно содержание молекул воды) и в твердых телах в качестве кристаллизационной влаги, входящей в структуру кристаллов. Соответственно, набор методов и устройств для измерения содержания молекул воды в материалах оказывается весьма разнообразным.

Традиции измерительной техники, опирающиеся на повседневный опыт, привели к тому, что в измерениях влажности сложилась специфическая ситуация, когда в зависимости от влияния количества влаги на те или иные процессы необходимо знать либо абсолютное значение количества влаги в веществе, либо относительное значение, определяемое как процентное отношение реальной влажности вещества к максимально возможной в данных условиях. Если необходимо знать, например, изменение электрических или механических свойств вещества, в этом случае определяющим является абсолютное значение содержания влаги. То же самое относится к содержанию влаги в нефти, в продуктах питания и т. д. В том случае, когда необходимо определить скорость высыхания влажных объектов, комфортность среды обитания человека или метеорологическую обстановку, на первое место выступает отношение реальной влажности, например воздуха, к максимально возможной при данной температуре.

В связи с этим характеристики влажности, а также величины и единицы влажности подразделяются на характеристики влагосостояния и влагосодержания.

Среди приборов для измерения влажности наиболее массовыми являются приборы для определения содержания воды в газах — гигрометры. Для измерения влажности твердых и сыпучих тел чаще всего используются те же гигрометры, только процесс подготовки пробы к анализу включает в себя перевод влаги в газовую фазу, которая затем и анализируется. Существуют в принципе методы непосредственного измерения содержания влаги в жидкостях и в твердых телах, например, методом ядерного магнитного резонанса. Приборы, построенные на таком принципе, достаточно сложны, дороги и требуют высокой квалификации оператора.

Гигрометры как самостоятельные приборы являются одними из самых востребованных измерительных приборов, поскольку с давних времен в них нуждались метеорологи. По изменению влажности, также как по изменению давления и температуры, можно предсказывать погоду, можно контролировать комфортность жизнеобеспечения в помещениях, контролировать различного рода технологические процессы. Например, контроль влажности на электростанциях, на телефонных станциях, на полиграфическом производстве и т.д. и т.п. является определяющим в обеспечении нормального режима функционирования.

Востребованность гигрометров породила разработки и изготовление большого количества различных типов приборов. Большинство измерителей влажности представляют собой датчики влажности с индикатором либо аналогового сигнала, либо сигнала в цифровой форме.

Из множества датчиков рассмотрим волосяной и емкостной.

1. Наиболее древний, наиболее простой и наиболее дешевый датчик влажности представляет собой обычный волос, натянутый между двумя пружинами. Для измерения влажности используется свойство волоса изменять длину при изменении влажности. Несмотря на кажущуюся примитивность такого датчика и на то, что процесс, лежащий в основе измерения, не определяется законами физики и поэтому не поддается расчету, гигрометры с волосяными датчиками изготавливаются в большом количестве.

2. Емкостные датчики влажности в настоящее время по массовости использования конкурируют и даже превосходят волосяные, поскольку по простоте и дешевизне они не уступают волосяным. Измеряемой физической величиной является емкость конденсатора, а это означает, что в качестве индикатора или выходного устройства может использоваться любой измеритель емкости. На подложку из кварца наносится тонкий слой алюминия, являющийся одной из обкладок конденсатора.

На поверхности алюминиевого покрытия образуется тонкая пленка окиси Al2O3. На окисленную поверхность наносится напылением второй электрод из металла, свободно пропускающего пары воды. Такими материалами могут быть тонкие пленки палладия, родия или платины. Внешний пористый электрод является второй обкладкой конденсатора.

Для определения относительной и абсолютной влажности на практике часто используются приборы, получившие название психрометров. Психрометры представляют собой два одинаковых термометра, один из которых обернут фитилем и смачивается водой. Мокрый термометр показывает температуру ниже, чем сухой термометр в том случае, если относительная влажность не равна 100%. Чем ниже относительная влажность, тем больше разность показаний сухого и мокрого термометров. Для психрометров различных конструкций составляются так называемые психрометрические таблицы, по которым находятся характеристики влажности.

Психрометр не очень удобен в эксплуатации, поскольку его показания не просто автоматизировать, и требуется постоянное увлажнение фитиля. Тем не менее, именно психрометр является самым простым и вместе с тем достаточно точным и надежным средством измерения влажности. Именно по психрометру чаще всего градуируются гигрометры с волосяными, емкостными или резистивными датчиками.

Метод измерения влажности жидкостей и твердых материалов заключается в высушивании или выпаривании влаги из вещества с последующим взвешиванием. Обычно пробу высушивают до тех пор, пока не перестанет изменяться ее вес. При этом, естественно, делается два допущения. Первое — что вся сортированная и химически связанная влага при выбранном режиме выпаривания улетучивается. И второе — что вместе с влагой не испарится никакой другой компонент. Очевидно, что во многих случаях гарантировать корректность выполнения процедур выпаривания очень сложно.

Другим универсальным методом измерения влажности жидких и твердых тел является метод, когда влага из них переходит в газовую фазу в каком-либо замкнутом объеме. В этом случае стандартизуют методику подготовки пробы, а измерения ведут одним из упомянутых типов гигрометров, предназначенных для измерений влаги в газовой фазе. С целью получения надежных результатов такие устройства калибруют по стандартным образцам влажности.

 

 

Анализ состава газовых смесей

Наиболее распространенный способ подготовки пробы газовой смеси к спектрофотометрическому анализу (равно как и по многим другим методам газового анализа) является то, что вошло в аналитическую практику настолько глубоко, что воспринимается многими не как пробоподготовка, а как самостоятельны и метод газового анализа. Речь идет о газовой хроматографии - способе временного разделения компонентов пробы при прохождении газовой смеси через длинный тонкий капилляр, наполненный каким-либо веществом, обладающим высокой способностью адсорбции (поверхностного поглощения или «примыкания») газов. Поскольку степень адсорбции к разным газам у различных сорбентов отличается, время прохождения компонентов смеси через сорбент - активированный уголь или цеолит - получается разное. В результате на выходе из хроматографической колонки составляющие газовой смеси появляются в различное время. Хроматограф калибруется для каждого газа по времени прохождения компонентов.

Информация о работе Пробоподготовка и её роль в обеспечении единства измерений