Проблемы химической (предбиоллогической) эволюции. Концепции самоорганизации в химии и смежных науках

Автор работы: Пользователь скрыл имя, 21 Ноября 2013 в 10:21, реферат

Краткое описание

Возникновение живого - проблема, волнующая человечество на протяжении всего его существования. Исследования ведутся представителями различных наук во многих аспектах, один из них заключается в стремлении «объяснить возникновение жизни из неорганической природы». На ее основе, в процессе химической эволюции, закладываются закономерности перехода от неживого к живому, новейшие данные молекулярной генетики исчерпывающе показали единство человека с животным миром, со всеми формами жизни. Химическая эволюция достигает высшей стадии на уровне предбиологических систем, а затем происходит переход к живому и в действие вступают законы биологической эволюции. В процессе химической эволюции на молекулярном уровне (от атомов к молекулам и далее к полимерам, т.е. предбиологическим системам) наиболее важную роль играют химические процессы, поскольку осуществляется развитие от низшего к высшему, от простого к сложному на уровне химических реакций, с химическими веществами

Содержание

Введение…………………………………………………………………….3
1.Проблемы химической эволюции……………………...………………..4
2.Этапы химической эволюции……………………………………………5
3.Изучение химической эволюции………………………………………..6
4. Самоорганизация как основа эволюции………………………………10
5.Синергетика и самоорганизация……………………………………….12
6.Синергетическая концепция самоорганизации……………………….14
Заключение………………………………………………………………..16
Используемая литература

Прикрепленные файлы: 1 файл

метод.и фил.пробл..doc

— 101.50 Кб (Скачать документ)

мИНИСТЕРство  образованиЯ и науки РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ  БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО  ОБРАЗОВАНИЯ

 

 

ИНСТИТУТ ЕСТЕСТВОЗНАНИЯ

 

 

 

 

 

 

 

 

Реферат

 

«Проблемы химической (предбиоллогической) эволюции.

Концепции самоорганизации в химии и смежных науках»

 

 

 

 

              

 

 

 

       

 

 

 

 

 

 

Содержание

Введение…………………………………………………………………….3

1.Проблемы химической эволюции……………………...………………..4

2.Этапы химической эволюции……………………………………………5

3.Изучение химической  эволюции………………………………………..6

4. Самоорганизация как основа эволюции………………………………10

5.Синергетика и самоорганизация……………………………………….12

6.Синергетическая концепция  самоорганизации……………………….14

Заключение………………………………………………………………..16

Используемая литература

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Возникновение живого - проблема, волнующая человечество на протяжении всего его существования. Исследования ведутся представителями различных наук во многих аспектах, один из них заключается в стремлении «объяснить возникновение жизни из неорганической природы». На ее основе, в процессе химической эволюции, закладываются закономерности перехода от неживого к живому, новейшие данные молекулярной генетики исчерпывающе показали единство человека с животным миром, со всеми формами жизни. Химическая эволюция достигает высшей стадии на уровне предбиологических систем, а затем происходит переход к живому и в действие вступают законы биологической эволюции. В процессе химической эволюции на молекулярном уровне (от атомов к молекулам и далее к полимерам, т.е. предбиологическим системам) наиболее важную роль играют химические процессы, поскольку осуществляется развитие от низшего к высшему, от простого к сложному на уровне химических реакций, с химическими веществами. Химическую эволюцию на молекулярном уровне можно представить в виде ряда этапов, характеризущихся усложнением вещества от простейших неорганических и органических молекул к малым биомолекулам, затем к сложным органическим соединениям и биополимерам, далее происходит образование надмолекулярных систем биополимеров, а их усложнение приводит к образованию живого.

 

 

 

 

 

 

 

 

 

1.Проблемы химической эволюции

Химическая эволюция, приводящая к возникновению жизни,—  биогенез, является единственной формой диалектического перехода от неживого вещества в живое среди всех возможных процессов развития материального мира. Проблемы химической эволюции и биогенеза относятся к важнейшим вопросам естествознания, представляют большой интерес для материалистической философии и давно уже привлекают внимание ученых разных специальностей.

Проблема химической эволюции в полном виде как проблема диалектического перехода от неживого вещества к живым организмам, от низших проявлений химизма к высшим сформулирована в философско-методологи-ческом плане Ф. Энгельсом, а также рассматривалась в трудах ряда естествоиспытателей, пытавшихся представить происхождение жизни эволюционным путем. Начиная с работ А. И. Опарина, предложившего коацерватнуго теорию происхождения жизни, в которой впервые была рассмотрена конкретная физико-химическая модель этого сложного явления, ряд других исследователей развивали идею прогрессивной химической эволюции, варьируя и учитывая успехи науки в области биохимии и молекулярной биологии.

Существует ряд принципиальных вопросов:

-что такое химическая эволюция в конкретном плане;

-существуют ли особые объекты химической эволюции и специфические химические явления и законы, отличные от обычных химических проявлений, или к химической эволюции относятся любые проявления химизма;

-что эволюционирует в химии: вещества или процессы;

-каковы роль молекулярно-структурного  и функционального аспектов и их взаимоотношение в химической эволюции;

-каковы причины, движущие силы и закономерности прогрессивной химической эволюции[1].

 

 

2.Этапы химической эволюции

Анализируя философский аспект химической эволюции, необходимо отметить, что она рассматривается, главным образом, в контексте биогенеза. Данный же путь вряд ли является единственным, ибо с появлением живого химическая эволюция не прекращается, а, наоборот, интенсифицируется, так как возникают биогеохимические и техногенные процессы. Более того, неконтролируемое вторжение химии в природный круговорот веществ угрожает самому существованию биосферы, о чем в свое время писал В. И. Вернадский.

Обратимся к вопросу  о классификации этапов химической эволюции. На наш взгляд, можно выделить следующие этапы:

1) астрофизический: синтез  ядер химических элементов, синтез  молекул в межзвездной среде;

2) космохимический: эволюция  химических соединений на планетах, спутниках и кометах;

3) геохимический;

4) биогеохимический;

5) антропохимический.

Третий и четвертый этапы  были выделены В. И. Вернадским, пятый (техногенный) - его учеником Ферсманом.

Данная классификация  не претендует на полноту и завершенность, безусловно, она нуждается в дальнейшем уточнении. Так, некоторые авторы рассматривают первый этап как чисто физическую проблему, и поэтому его лишь с натяжкой можно отнести к процессу собственно химической эволюции[2]. Вместе с тем все ученые солидарны в том, что на каждом этапе действуют свои специфические законы. В силу этого естественнонаучное решение проблемы предполагает комплексный подход к изучению феномена химической эволюции.

По мере продвижения от первого  этапа к пятому скорость химической эволюции возрастает. Этот вопрос заслуживает особого внимания[3].

3.Изучение химической эволюции

Своего рода промежуточным  между философским и естественнонаучным подходами к рассматриваемой проблеме является историко-научный, позволяющий выявить пути проникновения идеи развития в химию и другие науки, наметить тенденции в развитии химической науки и технологии. Данный аспект проблемы подробно разработан В. И. Кузнецовым и А. А. Печенкиным, которые считают, "что эволюционная химия - это ближайшее всей химии, начало ее новой истории".

Остановимся на естественнонаучном подходе. Как уже отмечалось, каждому этапу химической эволюции свойственны свои закономерности, которые изучаются соответствующей научной дисциплиной. Наибольший же интерес представляет собственно процесс усложнения химических веществ вплоть до создания живого, т. е. биогенез. Под этим углом проблема анализируется в работах А. П. Руденко. Автор выделяет два подхода к ее решению: актуалисгический (биохимический) и естественноисторический. Первый подход к проблеме дает возможность рассмотреть химическую эволюцию ретроспективно, со стороны биологии, исходя из известных свойств существующего живого, т. е. на основе конечного результата химической эволюции. Такой путь решения проблемы, по мнению автора, заводит в тупик.

Ученым приводится следующая аргументация: "Хотя многие биополимеры были также синтезированы в абиогенных условиях... однако условия синтеза оказались резко отличными от условий, предполагающихся для возникновения жизни в водной среде. Все эти синтезы... имеют положительный потенциал Гиббса и требуют дополнительной затраты химической энергии, реальные источники которой неизвестны. Без дополнительной энергии эти синтезы не могут осуществиться, а имевшиеся биополимеры не смогли бы сохраниться длительное время, так как равновесие процесса в этих условиях сдвинуто в сторону их гидролиза. Еще большие трудности и противоречия возникают при объяснении последующих этапов молекулярной эволюции, ее причин, движущих сил, механизмов естественного отбора, происхождения генетического кода. Неясно, почему вообще происходит химическая эволюция и чем она отличается от неорганизованных химических процессов, почему для построения живого было использовано ограниченное число веществ из всех возможных, почему химическая эволюция приводит к системам, удаляющимся от равновесия, характерным свойством которых является стационарное неравновесие, а все остальные процессы приводят к равновесию        и т. д."[4].

С подобными доводами трудно не согласиться. В то же время полностью отвергать эвристическую функцию биохимического подхода вряд ли целесообразно, поскольку он является важным для понимания биологической эволюции.

С точки зрения естественноисторического подхода все эти вопросы, как  считает А. П. Руденко, вполне разрешимы. Данный подход был разработан им в рамках теории эволюционного катализа, которая показала существование особых объектов с неравновесной структурой и функциональной организацией (элементарных открытых каталитических систем - сокращенно ЭОКС), способных к прогрессивной химической эволюции. Теория эволюционного катализа установила также граничные условия существования и развития этих систем, выявила законы, причины и движущие силы их эволюции, механизм естественного отбора.

Вопрос о возникновении ЭОКС в природных условиях остается открытым. Решению же его может содействовать рассмотрение геохимического аспекта биогенеза. Е. Г. Куковский, например, пишет: "Динамичность воды как жидкой фазы по отношению к твердой фазе - породам формирующейся планеты легла в основу активизации глобального для всей земной поверхности геохимического процесса – гипергенеза… который создал своеобразную ассоциацию сорбционно и каталитически активных высокодисперсных минералов, чем предопределил вероятность и неизбежность биогенеза, завершившегося феноменом жизни. Поэтому принято считать, что вместилищами для аккумуляции и сохранения простейших органических молекул были частицы глин..."[5].

Е. Г. Куковский подчеркивает узость рамок термодинамических параметров, необходимых для обеспечения стабильной эволюции предбиологических систем. Возможно, созданию таких условий способствовал природный синтез каолинового ядра, а затем глин на его основе. В 20-е годы В. И. Вернадский писал: "Чрезвычайно характерен и недостаточно учитывается термический характер каолинового ядра. Каолиновое ядро - Al2Si2O7 - единственное алюмокремневое соединение, пока известное, которое образуется с поглощением тепла. Это эндотермическое соединение... Эндотермические соединения могут образовываться только в среде, обладающей большой свободной энергией"[6].

Ныне значительно актуализировался прикладной аспект проблемы химической эволюции. В значительной мере это объясняется тем, что перед производством стоит задача создания экологически чистых технологий и новых материалов. "В ответ на требования самого высокоразвитого способа производства материальных благ, - подчеркивает В. И. Кузнецов, - химия переходит сейчас к новому - пятому - способу решения ее основной проблемы, открывающему пути использования в производстве материалов самых высокоорганизованных химических систем, какие только возможны в предбиологическом синтезе. Она начинает использовать каталитический опыт живой природы. Этот способ ложится в основу четвертой и последней концептуальной системы химической науки - эволюционной химии"[7].

От успехов в деле развития эволюционной химии зависит создание новых биотехнологий, безотходных технологий, а также производств, в которых химические процессы протекают не только в экстремальных (высокие давления и температуры), но и в обычных условиях. Возможно, не последнее место будет за методами эволюционной химии в решении проблемы "воспроизводства природной среды искусственным путем, приспособления ее к масштабам и темпам технического прогресса"[8].

Анализ современного состояния  проблем химической эволюции свидетельствует о том, что она вызывает стойкий интерес специалистов в различных областях знания. Достигнуты и определенные успехи: наметились направления философских и естественнонаучных исследований, осознана важность понимания эволюционных механизмов на химическом уровне для создания принципиально новых технологий. Вместе с тем остается целый ряд вопросов, требующих более глубокой проработки. В первую очередь - это проблема времени в химии. Здесь необходим всесторонний анализ - и философский, и естественнонаучный. Актуализируется и проблема более четкого определения черт химического процесса как стадии химической эволюции, что позволит глубже понять эволюцию материи. Разработка проблемы химической эволюции важна также для понимания современного вида периодической системы элементов Д. И. Менделеева, качественный и количественный состав которой требует дальнейшего объяснения.

Нецелесообразно пренебрегать и совершенно новыми подходами к  химии. Так, Г. П. Башляр предлагает несубстанционалистскую, или нелавуазианскую, химию: "В то время как субстанция Лавуазье предстает в виде непрерывного, распределенного в пространстве существования, излучение, сущность нелавуазианская, предстает как существование существенно временное, как некая частота или временная структура. Поэтому можно было бы задать такой вопрос: не достаточно ли этой структурированной, вибрирующей энергии (функции некоего количества времени) для определения существования субстанции? В этом плане субстанция представляла бы собой не что иное, как систему из множества резонансов, некую совокупность ритмов, способную поглощать и испускать известное г-излучение. То есть можно было бы предвидеть в этом плане исключительно временное исследование веществ, которое стало бы дополнением к структурному исследованию"[9].

Возможно, новые подходы к химии позволят представить проблему химической эволюции в совершенно ином свете. Интересные замечания на этот счет содержатся в работах И. К. Пригожина, по мнению которого сейчас "эволюционная парадигма охватывает всю химию"[10]. "Химия, - пишет             А. А. Печенкин, - традиционно граничила не только с физикой, но и с биологией. Поэтому проблематика эволюции и развития была ближе химии, чем физике. Когда были выдвинуты космогонические гипотезы, объясняющие происхождение Земли и других планет, и была создана биологическая теория эволюции, на химию легла задача навести мост между космологией и эволюционной биологией, описав и объяснив предбиологическую эволюцию. Но все же эволюционная проблематика долгое время находилась на периферии химической науки.

Информация о работе Проблемы химической (предбиоллогической) эволюции. Концепции самоорганизации в химии и смежных науках