Применение метода электрофореза в анализе лекарственных средств

Автор работы: Пользователь скрыл имя, 02 Декабря 2014 в 19:56, курсовая работа

Краткое описание

Фармацевтическая химия — наука, которая, базируясь на общих законах химических наук, изучает многообразный круг вопросов, связанных с лекарственными веществами: их получение и химическую природу, состав и строение, влияние отдельных особенностей строения их молекул на характер действия на организм, изучает физические и химические свойства лекарственных веществ и методы контроля их качества, определяет условия хранения лекарств.

Содержание

Введение……………………………………………………………………….3
1.Обзор литературы…………………………………………………………..5
1.1Электрокинетические явления……………………………………………5
1.2Фронтальный электрофорез……………………………………………….6
1.3Зональный электрофорез…………………………………………………..7
1.3.1Электрофорез в свободной жидкости…………………………………10
1.3.2Электрофорез в крупнопористых носителях…………………………11
1.3.3 Электрофорез на мелкопористых носителях………………………...13
2.Практическая часть………………………………………………………...15
2.1Капиллярный электрофорез……………………………………………...15
3.Общие выводы……………………………………………………………..28
4.Заключение…………………………………

Прикрепленные файлы: 1 файл

Курсовая фарм. химия.doc

— 751.38 Кб (Скачать документ)

 

Рис. 4. Схема процессов в кварцевом капилляре. Стрелкой показано направление электроосмотического потока.

Вследствие этого процесса в электролите, заполняющем капилляр, возникает направленное перемещение массы жидкости, которое вызвано приложенной разностью потенциалов, при этом вся масса жидкости (за малым исключением приповерхностного слоя) перемещается с одинаковой скоростью, т.е. формируется плоский профиль скоростей. Это очень важное обстоятельство, которое позволяет получить чрезвычайно высокую разрешающую способность метода, поэтому на него надо обратить особое внимание.

Минимальный состав системы, реализующей метод капиллярного электрофореза, должен иметь в своём составе следующие компоненты: кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор и устройство вывода информации. Дополнительные устройства позволяют автоматизировать подачу образцов, термостатировать капилляр и сделать более удобной обработку получаемой информации.

На рис. 5 представлена схема системы капиллярного электрофореза в простейшем случае. Капилляр заполняется раствором электролита, своими концами капилляр опущен в два сосуда, содержащих тот же электролит. Электролит обязательно должен обладать буферными свойствами, чтобы, с одной стороны, воспрепятствовать изменению состава раствора в приэлектродных пространствах, а с другой - стабилизировать состояние компонентов пробы в процессе анализа. В сосуды введены электроды, к которым прикладывается разность потенциалов. Под действием разности потенциалов в капилляре быстро устанавливается стационарное состояние: через него протекает электроосмотический поток (ЭОП), на который будет накладываться электромиграция катионов и анионов во взаимно противоположных направлениях.

 

Рис. 5. Схема системы капиллярного электрофореза

 

Как правило, в приборах капиллярного электрофореза ЭОП направлен от входного конца капилляра к детектору поэтому, при использовании кварцевого капилляра, разность потенциалов устанавливают таким образом, что входной конец капилляра имеет положительную полярность (анод), а детектор устанавливается вблизи катода. Если теперь в капилляр со стороны анода ввести небольшой объем раствора пробы, то ЭОП будет переносить зону пробы к катоду, и она некоторое время будет находиться в капилляре под воздействием электрического поля высокой напряженности. В течение этого времени компоненты пробы, имеющие заряды и отличающиеся от компонентов рабочего буфера, будут перемещаться в соответствии с присущими им электрическими подвижностями, специфичными для каждого компонента. Катионные компоненты пробы, двигаясь к катоду, будут обгонять электроосмотический поток. Скорость их движения будет складываться из скорости ЭОП и скорости электромиграции, поэтому на выходе капилляра катионные компоненты будут появляться первыми и тем раньше, чем больше электрическая подвижность данного иона. Нейтральные компоненты пробы будут перемещаться только под действием ЭОП, и появятся на выходе, когда его достигнет зона пробы. Анионные компоненты перемещаются к аноду с различными скоростями. Некоторые из них, медленно мигрирующие, будут появляться вблизи детектора после выхода ЭОП, а те, чья скорость миграции по абсолютной величине превышает скорость ЭОП, рано или поздно выйдут из капилляра в прианодное пространство.

Если время нахождения пробы в капилляре (которое можно регулировать длиной капилляра, скоростью ЭОП или приложенной разностью потенциалов) достаточно, то на выходе капилляра вблизи катода формируются зоны раствора, в которых находятся индивидуальные компоненты пробы. Происходит, таким образом, разделение исходной смеси. Если теперь с помощью детектора зарегистрировать появление компонентов на выходе из капилляра, то полученная запись будет называться электрофореграммой и может служить основой для качественного и количественного анализа смеси. Описанный вариант анализа носит название капиллярного зонного электрофореза (КЗЭ). В этом варианте могут определяться катионные компоненты проб и некоторые медленно мигрирующие анионы. Однако главные анионы, определяющие минеральный состав воды, зарегистрировать таким способом невозможно.[8,12]

 

Анализ анионов методом капиллярного электрофореза

Для того чтобы методом КЗЭ можно было определять анионные компоненты проб, необходимо изменить полярность прикладываемого напряжения. Однако в этом случае изменится не только направление миграции анионов, но также направление ЭОП и он будет препятствовать перемещению в сторону детектора медленно мигрирующих анионов. Для изменения направления ЭОП необходимо модифицировать поверхность кварцевого капилляра таким образом, чтобы знаки зарядов двойного электрического слоя поменялись на обратные, и направление ЭОП совпадало с направлением перемещения анионов. Это достигается введением в рабочий буферный раствор катионного поверхностно-активного вещества, например, бромида цетилтриметиламмония (ЦТАБ). Катион ЦТАБ активно сорбируется на кварцевой поверхности, занимая при достаточной его концентрации, все вакансии в ближайшем к поверхности слое. Поверхность как бы "ощетинивается" длинными цетильными (С16Н33- ) цепочками. при дальнейшей промывке рабочим буферным раствором поверхность сорбирует еще один слой поверхностно-активного катиона, ориентированного аммонийным концом наружу (сорбция "щетка в щетку"). В результате первая обкладка двойного электрического слоя становится положительно заряженнной, а вторая (в том числе и диффузная её часть) приобретает отрицательный заряд, и теперь ЭОП снова перемещается в направлении от входного конца капилляра к детектору.

Аналогичными свойствами по модификации поверхности капилляра обладают и другие буферные растворы, например, приготовленный на основе 2-[ N-Циклогексиламино] этан-сульфоновой кислоты с модификатором электроосмотического потока в гидроксильной форме (тетрадецетилтриметил аммония гидроксид) и т.п.

В системах капиллярного электрофореза наиболее часто применяется фотометрическое детектирование, в котором используется одна ила несколько длин волн, обычно лежащих в ультрафиолетовой области спектра. Соответственно отклик детектора будет наблюдаться только в том случае, когда определяемый компонент имеет заметное поглощение на длине волны детектирования. Это - прямое детектирование. Электрофореграмма будет представлять собой набор положительных пиков, возвышающихся над базовой линией.

Однако, анионы, растворенные в воде, зарегистрировать таким простым способом не удается, т.к. они не обладают собственным поглощением в указанном спектральном диапазоне. В этом случае применяется косвенное детектирование, суть которого состоит в том, что ведущий электролит готовится с добавкой вещества, поглощающего свет на длине волны детектирования. В случае определения анионов добавка также должна быть анионом, например, это может быть хромат-ион. Вследствие того, что ионная сила ведущего электролита в процессе разделения остается постоянной, в зоне, где находится непоглощающий ион, эквивалентно уменьшается концентрация поглощающего иона. В этом случае на электрофореграмме будут наблюдаться обратные (отрицательные) пики, площади которых пропорциональны концентрациям определяемых ионов. В дальнейшем, при компьютерной обработке результатов измерений, график "переворачивается" и приобретает вид, удобный для рассмотрения, с положительно расположенными пиками.

Таким образом, вариант зонного капиллярного электрофореза с модификацией поверхности капилляра и непрямым детектированием позволяет анализировать компоненты, которые в условиях проведения анализа находятся в форме анионов.[13]

Метод анализа - капиллярный электрофорез - на сегодняшний день является одним из наиболее перспективных и высокоэффективных методов разделения и анализа сложных смесей на составляющие компоненты и находит всё более широкое применение - особенно в зарубежной  практике, в том числе и лекарственных средств . Метод характеризуется экспрессностью, микрообъемами анализируемого раствора, отсутствием колонки и твёрдого сорбента, проблем с его «старением» (в отличие от ВЭЖХ), физической и химической деструкции и любого неспецифического связывания с ним компонентов пробы, а также практически не требуется органических растворителей .

Метод капиллярного электрофореза (КЭФ) основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля за счёт подачи высокого напряжения к концам капилляра.

Наиболее распространёнными вариантами метода КЭФ являются: капиллярный зонный электрофорез (КЗЭ) и мицеллярная электрокинетическая хроматография (МЭКХ).

КЗЭ - метод разделения, реализуемый в капиллярах и основанный на различии в электрокинетических подвижностях заряженных частиц как в водных, так и в неводных электролитах.

МЭКХ - вариант капиллярного электрофореза, который позволяет проводить разделение соединений ионного и нейтрального характера при использовании поверхностно-активных веществ (ПАВ). Разделение электронейтральных соединений осуществляется благодаря введению в состав ведущего электролита поверхностно-активных веществ  мицеллообразователей. Чаще всего используют анионный ПАВ (например, додецилсульфат натрия - ДДСН) в концентрациях, превышающих критическую концентрацию мицелообразования, что приводит к формированию так называемой «псевдостационарной фазы», и аналиты распределяются между мицеллой и буферным электролитом согласно их гидрофобности.Метод капиллярного электрофореза характеризуется высокой эффективностью (более сотни тысяч теоретических тарелок). Это объясняется прежде всего уникальным свойством ЭОП в кварцевом капилляре, который заключается в формировании плоского профиля потока (в отличие от параболического в ВЭЖХ), не вызывающий при движении зон компонентов практически их уширения. Очень высокая эффективность разделения позволяет широко применять метод для выявления не только близких по строению веществ (белков, пептидов, аминокислот, наркотиков, витаминов, красителей и др.), но и для контроля качества, технологического контроля, идентификации лекарственных препаратов, исследования фармакокинетики .

Эффективность, выраженная числом теоретических тарелок, может быть определена непосредственно из электрофореграммы.

К снижению эффективности могут привести ряд факторов: увеличение зоны вводимой пробы (определяемая длительность ввода); образование температурного градиента (за счёт разницы температуры в центре капилляра и на внутренней стенке капилляра). Возникающий вследствие этого градиент вязкости приводит к тому, что вещество у стенки перемещается медленнее, чем в центре, что вызывает уширение полос и снижение эффективности; адсорбция на стенках капилляра, приводящая к искажению формы пиков (появление хвостов), и другие факторы. Все эти параметры управляются путём создания оптимальной схемы разделения.

Основным способом детектирования в системах капиллярного электрофореза («Капель - 103 Р», «Капель - 104 Т», «Капель - 103 РТ», «Капель - 104 М», «Капель - 105», «Капель - 105 М») отечественного производителя - фирмы «Люмекс», является фотометрический .

Особенностью фотометрического детектирования разделённых аналитов в условиях кварцевого капилляра является малая толщина слоя (что обусловлено внутренним диаметром капилляра), а также - введением очень малых объёмов проб (~2-10 нл).

Чувствительность метода КЭФ с УФ-детектированием может быть существенно повышена за счёт концентрирования образца непосредственно в капилляре. Одним из наиболее общих подходов к увеличени концентрационной чувствительности в КЭФ является приём стекинга. Концентрирование образца происходит, когда ионы аналитов пересекают границу, которая отделяет зону низкой проводимости раствора и высокой - ведущего электролита. В случае если проба образца имеет значительно более низкую проводимость (за счёт разбавления водой или буфером), чем ведущий электролит, в зоне образца возникает относительно высокое электрическое поле. Аналиты внутри зоны образца движутся с более высокой скоростью, и, замедляясь на границе с зоной ведущего электролита, концентрируются. Стекинг образца применяется только к заряженным аналитам.

Чувствительность метода КЭФ с УФ-детектированием может быть также повышена за счет увеличения длины оптического пути при использовании капилляров с расширенным световым путем. Существует несколько способов: зону детектирования выполняют в форме пузырька, возрастание чувствительности в 3-5 раз; используют капилляры Z-формы, увеличение чувствительности в 20-40 раз.

Важной задачей любого сепарационного метода является селективность разделения компонентов пробы. Повышение селективности разделения в КЭФ может быть обеспечено за счёт изменения рН ведущего электролита, изменения напряжения, температурного режима в системе, введения в состав буферного раствора макроциклов, органических растворителей и др.

 

Применение метода капиллярного электрофореза при аналитических исследованиях.

Капиллярный электрофорез как новый и быстро развивающийся метод широко применяется в фармацевтической практике лекарственных средств, в том числе и в биологических средах с целью идентификации и количественного анализа. Используются преимущественно кварцевые капилляры и УФ-детекторы . Однако находят применение в зарубежной практике и электрохимическое детектирование , амперометрические детекторы типа «отражающая стенка» с электродами из углеродного волокна, меди , вольт-амперометрические детекторы , а также масс-спектроскопия , лазерная флюоресценция.

Капиллярный электрофорез применяется и при определении нелетучих примесей в лекарственных веществах и составляет конкуренцию методу ВЭЖХ, отличаясь очень высокой эффективностью и сводя к минимуму размытие пиков. Как правило, метод используется для анализа водных растворов (буферные растворы), с добавлением ПАВ, либо не содержащих ПАВ. В отдельных работах показаны возможности использования неводного капиллярного электрофореза.

Использование сепарационного метода анализа позволяет эффективно решать вопросы стандартизации лекарственных препаратов сложного состава. Была изучена возможность применения капиллярного электрофореза для качественного обнаружения и количественного определения бутоконазола нитрата в лекарственном препарате и биологических жидкостях. Проведена сравнительная оценка фармакокинетических параметров, противогрибковой активности и мукоадгезивных свойств бутоконазола нитрата. Методика использована для изучения накопления бутоконазола в сыворотке крови .

Проведено изучение возможности анализа доксициклина в моче капиллярным электрофорезом с использованием отечественного прибора «Нанофор-1». Методика характеризуется высокой воспроизводимостью и достаточной чувствительностью (граница обнаружения - 5 мкг/мл мочи) .

Фоминым А. Н. с соавторами показана возможность идентификации ряда азотсодержащих соединений основного характера в присутствии соэкстрактивных веществ мочи и крови методом капиллярного электрофореза «Капель-105» по электрофоретическим спектрам. Установлено, что на количественные характеристики исследуемых соединений не оказывают существенного влияния компоненты мочи и крови.[6,7,15]

Таким образом, в практической части курсовой был рассмотрен метод электрофореза - капиллярный электрофорез, который основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля за счет подачи высокого напряжения к концам капилляра. Данным методом был проведен анализ анионов. Также данный метод используется для анализа водных растворов. 

Информация о работе Применение метода электрофореза в анализе лекарственных средств