Полиэфирные волокна технического назначения. Способ получения и свойства

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 21:14, доклад

Краткое описание

Использование химических волокон в сырьевой базе текстильной промышленности является одним из важнейших направлений технического прогресса отрасли [1]. Актуальность этого направления также определяет мировая тенденция увеличения и расширения использования химических волокон и нитей в товарах народного потребления. Доля товаров народного потребления с использованием химических волокон в мире в настоящее время составляет 60% от общего объема потребления.

Прикрепленные файлы: 1 файл

полиэфирное волокно.doc

— 44.50 Кб (Скачать документ)

Полиэфирные волокна технического назначения. Способ получения и свойства

Использование химических волокон в сырьевой базе текстильной промышленности является одним из важнейших направлений технического прогресса отрасли [1]. Актуальность этого направления также определяет мировая тенденция увеличения и расширения использования химических волокон и нитей в товарах народного потребления. Доля товаров народного потребления с использованием химических волокон в мире в настоящее время составляет 60% от общего объема потребления.

Основным фактором опережающего темпа роста производства химических волокон является увеличение численности народонаселения земного шара и растущие в связи с этим потребности в текстильных (одежных) материалах. Объем выпуска натуральных волокон, в основном растительного происхождения (хлопок, лен и др.) ограничивается конкуренцией со стороны продовольственных культур, в особенности, если их выращивание дает большую прибыль, чем натуральные волокна.

Вторым важным определяющим фактором является то, что улучшение эксплуатационных свойств химических волокон наряду с созданием новых видов волокон позволяет значительно расширить области их применения как для бытовых, так и для технических целей.

Лидирующее положение среди химических волокон и нитей занимают полиэфирные - 69% от общего объема производства химических волокон и нитей.

Для промышленных целей наиболее важным свойством полиэфирных волокон является их устойчивость к кислотам и щелочам, высоким температурам и влаге, к действию микроорганизмов и многократным изгибам и трению.

Вложение до 15% полиэфирного волокна к хлопку позволяет значительно улучшить потребительские свойства тканей за счет повышения стойкости к истиранию в 1,5 раза и износоустойчивости в 1,5-2 раза, снижения усадки тканей в 1,4 раза и увеличения несминаемости тканей и трикотажных полотен в 1,5 раза. При этом сохраняются комфортность изделий и их гигиенические свойства, повышается срок их службы в 1,5-2 раза.

Простота стирки, быстрота сушки, а также минимальная необходимость глажения, опрятный внешний вид изделий и продолжительный срок службы - это все преимущества тканей из смесей полиэфирного и натурального волокон по сравнению с обычными хлопчатобумажными тканями. Именно поэтому полиэфирного волокна и нити у зарубежных производителей, в том числе США, нашли свое применение в таком массовом ассортименте, как спортивная одежда и постельное белье.

Возможности использования полиэфирных волокон и нитей в текстильной промышленности не ограничены. В РФ полиэфирные волокна не находят такого широкого применения, как в мире, что объясняется рядом причин, а именно:

отсутствием в РФ действующего производства полиэфирных волокон и нитей;

крайне узким и бедным ассортиментом выпускаемых полиэфирных волокон и нитей в Республике Беларусь;

крайне узким ассортиментом тканей, выпускаемых с использованием полиэфирных волокон (основная доля - спецодежда, технические ткани).

Для более широкого освоения полиэфирных волокон и нитей необходима программа по развитию сырьевой базы для текстильной и легкой промышленности.

Комплекс механических свойств (и их практически полная неизменность в мокром состоянии волокна), наиболее высокая термостойкость среди многотоннажных видов волокон, био- и хемостойкость, биоинертность и другие эксплуатационные характеристики обеспечили приоритетность полиэфирных волокон по сравнению с другими.

Штапельные полиэфирные волокна, включая модифицированные, частично вытеснили и продолжают вытеснять вискозные волокна и зачастую конкурируют с полиакрилонитрильными волокнами, особенно в смесях с шерстью. В случае использования смесей штапельных полиэфирных волокон с целлюлозными(хлопок, лен, гидратцеллюлозные) практически полностью нивелируются недостатки целлюлозных волокон, в частности сминаемость тканей на их основе, низкая биостойкость, и в то же время сохраняются высокие гигроскопические характеристики текстильных материалов. Прекрасное качество тканей для верхней одежды достигается при использовании смесей полиэфирных волокон с шерстью.

Текстильные полиэфирные нити, особенно текстурированные, широко применяют для изготовления тонких тканей и трикотажа бытового назначения, тканей для интерьера жилья, автомашин и во многих других целях. Они оказались более удачными по свойствам, чем ацетатные и триацетатные нити.

Полиэфирные технические нити оказались незаменимыми во многих отраслях техники. Как армирующий компонент при изготовлении резиновых технических изделий они существенно превосходят полиамидные и вискозные нити. Полиэфирные технические нити оказались вне конкуренции как материал для фильтрующих полотен, бумагоделательных сеток, канатов и других несущих высокие нагрузки изделий, электроизоляции, армированных швейных ниток и так далее.

Основная часть натуральных и химических волокон обладает весьма существенным недостатком - горючестью, из-за чего использование их в текстильных и других материалах ведет к значительному возрастанию пожароопасности [3].

Большое внимание в последние годы уделяется проблеме снижения горючести текстильных материалов.

Среди известных видов волокнистых материалов проблема огнезащиты, пожалуй, наиболее остро стоит для полиэфирных волокон и нитей. Во-первых, они сегодня по объемам производства и потребления занимают ведущие позиции среди всех видов химических и натуральных волокон, включая хлопок. Во-вторых, они широко применяются в чистом виде или в смеси с другими видами искусственных (преимущественно вискозных) и натуральных (хлопок, шерсть) волокон в тех областях, где вопросы пожарной безопасности чрезвычайно актуальны

Существует три метода огнезащитной отделки текстильных материалов, в том числе на основе полиэфирных волокон:

) поверхностная обработка антипиренами (АП) ткани, полотна или готового изделия;

2) физическая модификация волокна (введение АП путем аддитивного смешения с полимером);

) сополимеризация мономеров или олигомеров с реакционноактивным АП в процессе получения полимера, перерабатываемого в дальнейшем в волокна или нити.

Эффект огнезащиты, по данным фирмы “Hоеchst”, зависит от содержания в полиэфирном волокне фосфора, вводимого с АП при синтезе ПЭТ. Область оптимальных концентраций фосфора в полимерном субстрате лежит обычно в пределах 0,4-0,6 масс, %, обеспечивая требуемый уровень огнезащищенности полиэфирного волокна.

 

3. Технологическая  схема непрерывного процесса получения полиэтилентерефталата

В основу непрерывного процесса заложен принцип непрерывного прохождения реакционной массы через последовательный ряд аппаратов, остаточное давление в которых уменьшается от первых к последним [4].

Непрерывный процесс получения полиэфирного волокна в равной мере может быть осуществлен при использовании в качестве сырья как диметилтерефталата (ДМТ), так и терефталевой кислоты (ТФК) [5].

Для проведения переэтерификации ДМТ этиленгликолем (ЭГ) используют горизонтальный каскадный реактор, который может иметь до семи реакционных зон. В этот аппарат непрерывно дозируют расплав ДМТ и смесь ЭГ с катализатором. Мольное соотношение ДМТ: ЭГ равно 1,7-1,8, то есть в данном случае количество взятого ЭГ меньше эквимольного. Температура реакционной массы на входе в переэтерификатор достигает 160-180°С, а на выходе - 245°С. Продолжительность пребывания компонентов в реакционной зоне составляет 4 ч. Поликонденсация ДГТ и олигомеров осуществляется в нескольких аппаратах (в двух или трех) специальной конструкции, которая обеспечивает создание тонкого слоя при интенсивном перемешивании расплава и минимальное время пребывания полимера в зоне реакции.

Для получения штапельного волокна требуется ПЭТ со средней молекулярной массой (22000-25000), поэтому в данную схем (рис. 3) включено только два аппарата поликонденсации. При предварительной поликонденсации в первом аппарате поддерживается невысокий вакуум (остаточное давление 3,3-6,6 кПа и температура 265-270°С). Продолжительность пребывания продукта в аппарате около 2 ч. Окончательная поликонденсация протекает во втором реакторе при 275-280°С и вакууме 0,066-0,133 кПа. Готовый расплав выгружается из аппарата с помощью вертикального шнека или шестеренчатого насоса и транспортируется в течение 8-10 мин по обогреваемому расплавопроводу к прядильной машине. В этот момент в полимер вводят различные добавки, а также матирующие (двуокись титана) и окрашивающие агенты.

Для полноты завершенности реакции переэтерификации важно иметь большой избыток этиленгликоля [4], но это вызывает увеличение количества побочного продукта - диэтиленгликоля и ухудшение цвета расплава.

Непрерывный процесс получения полиэтилентерефталата (ПЭТ) и нитей на его основе имеет следующие преимущества [5]: отпадает необходимость в применении громоздких загрузочных бункеров, сложных и энергоемких плавильных устройств, достигается возможность переработки ПЭТ практически любой молекулярной массы, поскольку не требуется повторного плавления полимера.

Непрерывный способ более перспективен и экономичен [11]: его применение позволяет снизить себестоимость волокна на ~ 10% при использовании в качестве исходного сырья диметилтерефталата и на ~ 20% при использовании терефталевой кислоты.

Полиэфирное волокно – одно из самых распространённых среди синтетических волокон. Получают его путем формования из расплава полиэтилентерефталата (термопластика) или его производных. Это волокно обладает такими полезными свойствами, как термостойкость, высокая степень упругости, низкая теплопроводность. Поэтому из него получаются изделия, которые хорошо сохраняют форму и имеют малую усадку.

Применяют полиэфирное волокно, смешивая его с хлопком, шерстью, льном или вискозным волокном. Из полученных смесей шьют пальто, сорочки, костюмы, а также гардинно-тюлевые изделия. Полиэфирное волокно успешно применяется и в производстве нетканых материалов, в частности, синтепона, швейных ниток, технических тканей, корда. Для изготовления хирургического шовного материала также используется полиэфирное волокно.

К недостаткам полиэфирного волокна относятся: повышенные жесткость и электризуемость, возможность образования пилинга на поверхности изделий.

Резкое увеличение объемов производства полиэфирного волокна связано с его универсальностью, высокими показателями физико-механических свойств. Поэтому волокно часто используется в производстве текстильных изделий народного потребления, а также специального технического назначения. Тем более что этот материал один из самых дешевых среди синтетических волокон. Многочисленные преимущества полиэфирного волокна позволяют ему удерживать лидирующие позиции в производстве синтетических волокон и нитей.

 


Информация о работе Полиэфирные волокна технического назначения. Способ получения и свойства