Автор работы: Пользователь скрыл имя, 19 Декабря 2012 в 15:22, реферат
На начальном этапе разработки нефтяных месторождений, как правило, добыча нефти происходит из фонтанирующих скважин практически без примеси воды. Однако на каждом месторождении наступает такой период, когда из пласта вместе с нефтью поступает вода сначала в малых, а затем все в больших количествах. Примерно две трети всей нефти добывается в обводненном состоянии. Пластовые воды, поступающие из скважин различных месторождений, могут значительно отличаться по химическому и бактериологическому составу. При извлечении смеси нефти с пластовой водой образуется эмульсия, которую следует рассматривать как механическую смесь двух нерастворимых жидкостей, одна из которых распределяется в объеме другой в виде капель различных размеров.
Ликвидировать потери легких фракций нефти можно в основном применением рациональных систем сбора нефти и попутного нефтяного газа, а также сооружением установок по стабилизации нефти для ее последующего хранения и транспорта. Под стабилизацией нефти следует понимать извлечение легких углеводородов, которые при нормальных условиях являются газообразными, для дальнейшего их использования в нефтехимической промышленности.
В настоящее время для стабилизации нефти на промыслах используют в основном метод сепарации. Применяют сепараторы различных конструкций, из которых наибольшее распространение получили гравитационные, жалюзийные и центробежные (гидроциклонные).
В гравитационных сепараторах осаждение капельной и твердой взвесей из газового потока происходит под действием силы тяжести. Высокая степень разделении газа и жидкости достигается при очень малых скоростях газа. Установленная практикой оптимальная скорость газа, при которой степень отделения нефтяной взвеси составляет 75—85%, равна 0,1 м/с при давлении 6 МПа.
Жалюзийные сепараторы позволяют достичь более высокой степени очистки газа от взвешенной нефти, чем гравитационные. Установленная на выходе такого сепаратора жалюзийная насадка отбивает значительную часть капелек нефти, не осевших под действием гравитационной силы.
В гидроциклонных сепараторах отделение газа от нефти происходи за счет отбрасывания центробежной силой более тяжелых капель нефти к периферии, т.е. к стенкам сепаратора, по которым она стекает вниз.
ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ УСТАНОВОК ПОДГОТОВКИ НЕФТИ
Сбор и подготовка нефти и попутного газа на площадях месторождений, начинающиеся вблизи устья скважин и заканчивающиеся на установках подготовки нефти и газа, являются единой технологической системой. Существует сравнительно много технологических схем по подготовке нефти, однако их следует рассматривать совместно с системами сбора нефти и газа. Рассмотрим одну из таких систем.
Напорная система сбора
Напорная система сбора (см. рис.) действует следующим образом. Из скважины нефть под давлением поступает на автоматическую групповую замерную установку, где поочередно замеряется дебит всех скважин, а затем вся нефть подается на участковую сепарационную установку. Дебит скважины замеряется жидкостным расходомером с предварительным отделением газа в циклонном сепараторе. После прохождения расходомера нефть и газ снова смешиваются и подаются на участковую сепарационную установку, где на сепараторе первой ступени при давлении 4—5 кгс/см2 газ отделяется и подается на газоперерабатывающий завод. Нефть с пластовой водой и оставшимися растворенными газами насосами перекачивается на центральный сборный пункт, где проходит вторую ступень сепарации через концевые сепараторы и подается на установку комплексной подготовки или в сырьевые резервуары. Газ второй ступени сепарации компрессорной станцией направляется на газоперерабатывающий завод.
Данная напорная система сбора полностью герметизирована, что исключает потери газа и легких фракций нефти. Она позволяет производить подготовку нефти на центральном пункте нескольких месторождений, расположенных на расстоянии до 100 км. Однако длительный совместный транспорт нефти и воды может привести к созданию стойких эмульсий, и при высокой обводненности нефти могут увеличиться эксплуатационные расходы на транспорт. Тем не менее это одна из перспективных систем сбора нефти, которая широко применяется в настоящее время.
Существует сравнительно большое число технологических схем по подготовке нефти, газа и воды. Сами установки по подготовке могут размещаться в любом пункте системы сбора, начиная от скважины и кончая головными сооружениями магистральных нефтепроводов.
Рис. Напорная система сбора нефти, газа и воды:
1 — выкидные линии; 2 — гидроциклонные сепараторы; 3 — расходомеры жидкости; 4 — сборные напорные коллекторы; 5 — сепараторы первой ступени; 6 — центробежные насосы; 1 — сепаратор второй ступени; 8 — сепаратор третьей ступени; 9 — сырьевые резервуары; КС — компрессорная станция; ГПЗ — газоперерабатывающий завод.
Целесообразность размещения установок подготовки нефти в том или ином пункте определяется в каждом конкретном случае технико-экономическим анализом возможных вариантов. Установлено, что наименьшие капитальные вложения и эксплуатационные затраты на подготовку нефти возможны при размещении установок в местах наибольшей концентрации нефти (сборные пункты, товарные парки, головные сооружения).
Оптимальной технологической схемой подготовки нефти к транспорту следует считать такую, которая при наименьших затратах в отведенное технологическое время позволяет получать нефть с допустимым содержанием воды, солей и с необходимой глубиной стабилизации.
В настоящее время проводят комплексную подготовку нефти в районах промыслов, поэтому на основных нефтяных месторождениях созданы комплексные установки по подготовке нефти, которые объединяют процессы обезвоживания, обессоливания и стабилизации.
На рис. приведена принципиальная технологическая схема установки комплексной теплохимической подготовки нефти.
Рис. Установка комплексной теплохимической подготовки нефти.
Нефть из скважины после групповых замерных установок по коллектору подается в концевую совмещенную сепарационную установку КССУ 2, в которую через смеситель 1 подается горячая вода из отстойника 6, содержащая отработанный деэмульгатор. Под действием тепла пластовой воды и остатков деэмульгатора, поступающих из отстойника 6 в КССУ 2, происходит частичное разделение эмульсии на нефть, воду и газ. Отделившаяся вода подается в нефтеловушки 20, а выделившийся газ поступает на газобензиновый завод. Нефть из КССУ 2 вместе с оставшейся водой насосом 3 прогоняется через теплообменники 4 и пароподогреватели 5, затем нагретая нефть поступает в отстойник 6 для окончательного отделения нефти от воды. Отделенная вода уносит с собой основное количество солей из нефти. Для более полного обессоливания нефть из отстойника 6 направляется на смешение с горячей пресной водой, которая подается насосом 17 с предварительным подогревом пароподогревателем 15 и обескислороживанием в емкости 16. После тщательного перемешивания пресной воды с нефтью, содержащей соли, эмульсия направляется в отстойник 7, где доводится до требуемой кондиции по содержанию солей. После обессоливания и отделения воды нефть при необходимости может быть направлена из отстойника 7 на дополнительное обессоливание и обезвоживание в электродегидратор 8, а если содержание воды и солей в пределах нормы, то нефть, минуя электродегидратор 8, подается прямо в вакуумный сепаратор 9. Вакуумные компрессоры 12 забирают из сепаратора 9 газ, из которого при прохождении холодильника 10 и гидроциклонного сепаратора 11 выделяется основное количество легких углеводородов. Конденсат из сепаратора 11 отправляется на газобензиновый завод, а газ направляется на специальные установки для полной деэтанизации. Перед теплообменником 4 в нефть вводится деэмульгатор, воздействующий на поверхностные свойства пограничных слоев двух фаз эмульсии. Деэмульгатор также вводится вместе с подачей пресной воды перед отстойником 7.
Дайной системой предусмотрена очистка сточных вод с последующей подачей их на нагнетательные скважины для закачки в пласт.
ОЧИСТКА ГАЗА ОТ МЕХАНИЧЕСКИХ ПРИМЕСЕЙ
К механическим примесям относятся частицы породы, выносимые газовым потоком из скважины, строительный шлак, оставшийся после окончания строительства промысловых газосборных сетей и магистральных трубопроводов, продукты коррозии и эрозии внутренних поверхностей и жидкие включения конденсата и воды.
Согласно техническим требованиям на природные и нефтяные газы содержание жидкой взвеси в транспортируемом газе не должно превышать 25—50 г. на 1000 м3 газа. Еще более жесткие требования необходимо предъявлять к содержанию твердой взвеси (не более 0,05мг/м3), которая способствует эрозионному износу технологического оборудования газопроводов. Так, при содержании 5—7 мг/м3 твердой взвеси к.п.д. трубопроводов уменьшается на 3—5% в течение двух месяцев эксплуатации, а при запыленности более чем ЗОмг/м3 трубопровод выходит из строя через несколько часов из-за полного эрозионно-ударного износа.
По принципу работы аппараты для очистки газа от механических примесей подразделяются на:
Наиболее широко используются аппараты «мокрого» и «сухого» пылеулавливания. Очистка газа по пути следования его от месторождения до потребителя производится в несколько ступеней. Для ограничения выноса из месторождения породы призабойную зону оборудуют фильтром.
Вторую ступень очистки газ проходит на промысле в наземных сепараторах, в которых сепарируется жидкость (вода и конденсат) и газ очищается от частиц породы и пыли. Промысловые очистные аппараты работают, используя свойства выпадения взвеси под действием силы тяжести при уменьшении скорости потока газа или используя действие центробежных сил при специальной закрутке потока. Поэтому промысловые аппараты очистки делятся на гравитационные и циклонные. Гравитационные аппараты бывают вертикальные и горизонтальные. Вертикальные гравитационные аппараты рекомендуются для сепарации газов, содержащих твердые частицы и тяжелые смолистые фракции, так как они имеют лучшие условия очистки и дренажа.
Вертикальные сепараторы изготовляют диаметром 400—1650мм, горизонтальные — диаметром 400—1500мм при максимальном давлении 16 МПа. При оптимальной скорости эффективность сепарации составляет до 80%.
Третья ступень очистки газа происходит на линейной части газопровода и компрессорных станциях. На линейной части устанавливают конденсатосборники, так как в результате несовершенной сепарации на промысле газ всегда имеет жидкую фазу. Наибольшее распространение получили конденсатосборники типа «расширительная камера» (см. рис.). Принцип их работы основан на выпадении из потока газа капелек жидкости под действием силы тяжести из-за снижения скорости газа при увеличении диаметра трубопровода. Существенным недостатком при эксплуатации газопроводов с системой «расширительных камер» являются затруднения, связанные с пропуском устройств для очистки внутренней полости трубопровода.
Рис. Конденсатосборник типа «расширительная камера».
Вертикальный масляный пылеуловитель представляет собой вертикальный стальной цилиндр со сферическим днищем, рассчитанным на рабочее давление в газопроводе. Диаметр пылеуловителя 1080—2400 мм. Внутри пылеуловителя находятся устройства, обеспечивающие контактирование масла с газом и отделение частиц масла от газа при выходе его из аппарата. Пропускная способность масляного пылеуловителя может быть рассчитана по формуле
,
где Q — максимальная пропускная способность при стандартных условиях, м3/сут; D — внутренний диаметр пылеуловителя, м; p — давление газа, МПа; рж и рг— плотность смачивающей жидкости и газа при рабочих условиях, кг/м3, Т — температура газа, К.
Чтобы обеспечить нормальную работу пылеуловителей, необходимо поддерживать постоянный уровень масла. Пропускная способность вертикальных масляных пылеуловителей при заданном давлении ограничивается скоростью потока газа в контактных трубках, которая не должна превосходить 1—3 м/с.
Преимущество вертикального масляного пылеуловителя по сравнению с горизонтальным пылеуловителем заключается в высокой степени очистки (общий коэффициент очистки достигает 97—98%). Недостатками его являются большая металлоемкость, наличие жидкости и ее унос (допускается не более 25 г. на 1000 м3 газа), большое гидравлическое сопротивление (0,35—0,5 кгс/см2), чувствительность к изменениям уровня жидкости. В горизонтальном пылеуловителе используется барботажный способ промывки газа вместо промывки в контактных трубках. Поток газа, поступающего в аппарат через два симметричных патрубка, меняет направление на 90° перед отбойным козырьком. Далее газ поступает в регистры с щелевидными отверстиями для равномерного распределения под горизонтальным стальным листом с перфорацией, который делит пылеуловитель на две части.
Циклонный пылеуловитель представляет собой аппарат цилиндрической формы с встроенными в него циклонами. Газ поступает через боковой верхний входной патрубок в распределитель, к которому приварены звездообразно расположенные циклоны, закрепленные неподвижно на нижней решетке. Отсепарированная жидкость и твердые частицы по дренажному конусу циклона попадают в грязевик.
УСЛОВИЯ ОБРАЗОВАНИЯ ГИДРАТОВ И БОРЬБА С НИМИ
Влажный газ — смесь сухого газа и водяного пара. Поскольку молярная концентрация компонентов в паровой (газовой) смеси соответствует их парциальному давлению, то молярное содержание водяного пара в газе можно выразить формулой
,
где WB — содержание водяных паров, моль/моль или м3/м3; р — относительная влажность газа; р — давление насыщенных паров воды при данной температуре, Па; Р — полное давление газа, Па.
Относительной влажностью газа называется отношение количества паров воды, фактически находящихся в газе при данных t и P, к количеству паров, способных удержаться в газе в состоянии насыщения при тех же условиях.
Температура, при которой газ становится насыщенным при данным давлении и количестве водяного пара, называется точкой росы газа.
Гидраты природных газов
Гидраты — кристаллические вещества, образованные ассоциированными молекулами углеводородов и воды; они имеют кристаллическую структуру. Свойства гидратов газов позволяют рассматривать их как твердые растворы. Исследования показали, что содержание водяного пара в газообразной фазе в системе «газ — гидрат» меньше, чем его содержание в системе «газ — вода». Возникновение гидрата обусловлено определенными давлением и температурой при насыщении газа парами воды. Гидраты распадаются после того, как упругость паров воды будет ниже парциальной упругости паров исследуемого гидрата. Гидраты природных газов внешне похожи на мокрый спрессованный снег, переходящий в лед. Скапливаясь в газопроводах, они могут вызвать частичную или полную их закупорку и тем самым нарушить нормальный режим работы магистрали. Составы гидратов выражаются формулами: CH4*6H2O, C2H6*6H2O, C3H8*17H2O и др.
В газопроводе очень важно определить место образования гидратов. Для этого необходимо знать состав и начальную влажность газа, а также его давления и температуру в газопроводе.
При понижении давления в газопроводе гидраты могут образовываться при все более низких температурах. Когда давление станет ниже некоторого предела, гидраты смогут образовываться при обычной температуре газа в газопроводе - возникает опасность гидратной пробки. После выпадения газ недонасыщен парами воды, что эквивалентно снижению его точки росы. При дальнейшем движении газа может возникнуть еще одна гидратная пробка, соответствующая этой новой точке.