Автор работы: Пользователь скрыл имя, 27 Апреля 2012 в 19:48, реферат
Печень — самый крупный паренхиматозный орган в организме человека. У взрослого человека она весит 1,5 кг. Хотя печень составляет 2-3% массы тела, на нее приходится от 20 до 30% потребляемого организмом кислорода. Она является- «метаболическим альтруистом. Она выполняет ряд ключевых функций в организме:
1) Принимает и распределяет вещества, поступающие в организм из пищеварительного тракта, которые приносятся с кровью по воротной вене. Эти вещества проникают в гепатоциты, подвергаются химическим превращениям и в виде промежуточных или конечных метаболитов поступают в кровь и разносятся в другие органы и ткани.
2) Служит местом образования желчи.
3) Синтезирует вещества, которые используются в других тканях.
4) Инактивирует экзогенные и эндогенные токсические вещества, а также гормоны.
Таким образом видно, что печень «печётся» обо всём организме.
\
Реферат.
«Печень – орган альтруист»
Биохимия печени
Печень — самый крупный паренхиматозный орган в организме человека. У взрослого человека она весит 1,5 кг. Хотя печень составляет 2-3% массы тела, на нее приходится от 20 до 30% потребляемого организмом кислорода. Она является- «метаболическим альтруистом. Она выполняет ряд ключевых функций в организме:
1) Принимает и распределяет вещества, поступающие в организм из пищеварительного тракта, которые приносятся с кровью по воротной вене. Эти вещества проникают в гепатоциты, подвергаются химическим превращениям и в виде промежуточных или конечных метаболитов поступают в кровь и разносятся в другие органы и ткани.
2) Служит местом образования желчи.
3) Синтезирует вещества, которые используются в других тканях.
4) Инактивирует экзогенные и эндогенные токсические вещества, а также гормоны.
Таким образом видно, что печень «печётся» обо всём организме.
Функции печени.
Одной из наиболее важных функций печени является - метаболическая. Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.
Местами "соединения" обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из ЦТК, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.
С обменом липидов углеводы связаны еще более тесно:
- Образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола.
- Глицеральдегидфосфат, также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат.
- Глицерол-3-фосфат, образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути.
- "Глюкозный" и "аминокислотный" ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.
Углеводный обмен
В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.
Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.
Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.
Липидный обмен
Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП). Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП.
. Скорость окисления жирных кислот определяется скоростью процессов липолиза. Ускорение липолиза характерно для состояния углеводного голодания и интенсивной мышечной работы. При ускорение b-окисления в печени образуется больше Ацетил-КоА, чем ей требуется. Печень - "орган-альтруист" и поэтому печень отправляет глюкозу в другие ткани.
Печень стремится направить в другие ткани и свой собственный Ацетил-КоА, но не может, так как для Ацетил-КоА клеточные мембраны непроницаемы. Поэтому в печени из Ацетил-КоА синтезируются специальные вещества, которые называются "кетоновые тела". Кетоновые тела, которые используются большинством тканей как альтернативный источник энергии.А.
Белковый обмен
Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на "экспорт" – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.
Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины.
Пигментный обмен
Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь.
Пигментный обмен, в свою очередь, играет важную роль в обмене железа в организме – в гепатоцитах находится железосодержащий белок ферритин, который используется как депо железа в организме.
Обезвреживание токсических соединений
Термин детоксикация относится к целому ряду гоместатических функций печени , поддерживающих постоянство состава крови . Бактерии и другие патогенные организмы удаляются из крови синусоидов купферовскими клетками , а токсины, которые они выделяют, обезвреживаются в результате биохимических реакций, происходящих в гепатоцитах ( клетках печени ). К обезвреживанию токсинов приводят такие реакции, как окисление, восстановление, метилирование или конденсация с другой органической или неорганической молекулой. После детоксикации эти вещества, теперь уже в виде безвредных продуктов, выводятся почками .
Водорастворимые вещества обычно выводятся в неизмененном виде с мочой или желчью. Жирорастворимые же соединения должны превращаться в менее активные или водорастворимые вещества, в противном случае они могут накапливаться в организме и влиять на его жизнедеятельность. Печень обеспечивает элиминацию многих экзо- и эндогенных соединений. Интенсивность элиминации того или иного соединения зависит от связывания его с белками, активности в его отношении печеночных ферментов и печеночного кровотока. Элиминация ряда веществ в значительной степени происходит уже при первом прохождении через печень крови, оттекающей от ЖКТ через воротную вену.Например, биотрансформации в печени подвергаются следующие вещества:
стероидные и тиреоидные гормоны, инсулин, адреналин,
продукты распада гемопротеинов (билирубин),
продукты жизнедеятельности микрофлоры, всасывающихся из толстого кишечника – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов,
ксенобиотики (токсины, лекарственные вещества и их метаболиты). «защитные» синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак. В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофона – скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой.
В целом все реакции биотрансформации делят на две фазы:
Реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH2, ‑SH). Эти метаболиты часто неактивны, хотя в некоторых случаях активность не исчезает, а только изменяется. Многие лекарственные вещества, попадая в организм, превращаются на первой стадии биотрансформации в активные формы и оказывают необходимый лечебный эффект. Но часто ряд ксенобиотиков не детоксицируется, а наоборот токсифицируется с участием монооксигеназной системы и становится более реакционноспособным.
Продукты метаболизма чужеродных веществ, образовавшихся на первой стадии биотрансформации, подвергаются дальнейшей детоксикации с помощью ряда реакций второй стадии.
Реакции 2 фазы. Образующиеся при этом соединения менее полярны и в связи с этим легко удаляются из клеток. Преобладающим является процесс конъюгации, катализируемый глутатион-S-трансферазой, сульфотрансферазой и UDP-глюкуронилтрансферазой. Конъюгацию с глутатионом, приводящую к образованию меркаптуровых кислот, принято рассматривать в качестве основного механизма детоксикации. Если эти метаболиты достаточно полярны, они могут легко экскретироваться.
Клиренс крови
Химический клиренс крови может осуществляться печенью путем избирательного поглощения вещества из крови и выделения его из организма желчью без химических превращений, например, холестерин может частично выделяться с желчью в неизмененном виде.
Нерастворимые частички удаляются из крови путем активного фагоцитоза купферовскими клетками. Фагоцитарные клиренсные функции купферовских клеток связаны прежде всего с их иммунной защитной ролью, они выступают в качестве фиксаторов иммунных комплексов. Купферовские клетки наряду с другими клетками ретикулоэндотелиальной системы фагоцитируют различные инфекционные агенты, удаляют из тока крови разрушенные эритроциты.
Обмен гормонов и витаминов
Стероидные гормоны (глюкокортикостероиды, андрогены, эстрогены, альдостерон) образуются вне печени, но ей принадлежит важнейшая роль в их инактивации и распаде. Именно печень осуществляет ферментативную инактивацию и конъюгацию стероидных гормонов с глюкуроновой и серной кислотами. Печень активно влияет на гомеостатическую регуляцию уровня глюкокортикоидных гормонов. Она синтезирует также специфический транспортный белок крови - транскортин, который связывает гидрокортизон, делая его временно неактивным.
Печень участвует в обмене почти всех витаминов, в ней происходит их депонирование и частично разрушение. Обмен витамина А на всех этапах прямо зависит от функции печени. Всасывание поступающего с пищей жирорастворимого витамина А в кишечнике вместе с другими веществами липидной природы происходит благодаря эмульгирующему действию желчи. Большая часть витамина А накапливается печенью в мельчайших жировых капельках в цитоплазме печеночных и купферовских клеток. Так же, как и в кишечнике, в печени каротин превращается в витамин А
Печень это центральный орган химического гомеостаза организма, где создается единый обменный и энергетический путь для метаболизма белков, жиров и углеводов.