Общая характеристика металлов главной подгруппы II группы

Автор работы: Пользователь скрыл имя, 10 Августа 2014 в 14:34, реферат

Краткое описание

На внешнем уровне имеют по два электрона. Отдавая их, они проявляют в соединениях степень окисления +2. В окислительно-восстановительных реакциях все металлы подгруппы ведут себя как сильные восстановители, однако, несколько более слабые, чем щелочные металлы. Это объясняется тем, что атомы металлов II группы имеют меньшие атомные радиусы, чем атомы соответствующих щелочных металлов, расположенных в тех же периодах.

Содержание

Общая характеристика металлов главной подгруппы II группы 2
Физические и химические свойства металлов 3
Характеристика Бериллия (Be) 5
Характеристика Магния (Mg) 8
Характеристика Кальция (Ca) 13
Характеристика Стронция (Sr) 19
Характеристика Бария (Ba) 23
Характеристика Радия (Ra) 27
Заключение 31
ПРИЛОЖЕНИЕ 1 32
ПРИЛОЖЕНИЕ 2 33
ПРОЛОЖЕНИЕ 3 34
ПРИОЛОЖЕНИЕ 4 35
ПРИЛОЖЕНИЕ 5 36

Прикрепленные файлы: 1 файл

Общая характеристика металлов главной подгруппы II группы реферат.docx

— 288.05 Кб (Скачать документ)

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

При проведении реакции с расплавом щелочи при 400—500 °C образуются бериллаты:

Изотопы бериллия 
Изотоп 8Be отсутствует в природе, поскольку является крайне нестабильным и имеет период полураспада 10−18 с. Стабильным является 9Be. Кроме 9Be в природе встречаются радиоактивные изотопы 7Be и 10Be. На данный момент известны 12 изотопов бериллия.

Получение 
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:

В настоящее время бериллий получают, восстанавливая его фторид магнием:

,

либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.

Применение 
Легирование сплавов 
Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. В технике довольно широко распространены бериллиевые бронзы типа BeB (пружинные контакты). Добавка 0,5 % бериллия в сталь позволяет изготовить пружины, которые пружинят при красном калении.

Рентгенотехника

Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу) и окошки рентгеновских и широкодиапазонных гамма-детекторов, через которые излучение проникает в детектор.

Ядерная энергетика 
В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми α-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и α-частиц возникают нейтроны: 9Ве + α → n + 12C. Оксид бериллия является наиболее теплопроводным из всех оксидов и служит высокотеплопроводным высокотемпературным изолятором, и огнеупорным материалом (тигли), а кроме того наряду с металлическим бериллием служит в атомной технике как более эффективный замедлитель и отражатель нейтронов чем чистый бериллий, кроме того оксид бериллия в смеси с окисью урана применяется в качестве очень эффективного ядерного топлива. Фторид бериллия в сплаве с фторидом лития применяется в качестве теплоносителя и растворителя солей урана, плутония, тория в высокотемпературных жидкосолевых атомных реакторах. Фторид бериллия используется в атомной технике для варки стекла, применяемого для регулирования небольших потоков нейтронов. Самый технологичный и качественный состав такого стекла -(BeF2−60 %,PuF4−4 %,AlF3−10 %, MgF2−10 %, CaF2−16 %). Этот состав наглядно показывает один из примеров применения соединений плутония в качестве конструкционного материала (частичное).

Лазерные материалы 
В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).

Аэрокосмическая техника 
В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материал. Конструкционные материалы на основе бериллия обладают одновременно и лёгкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Налажено производство бериллидов применяемых как конструкционные материалы для двигателей и обшивки ракет и самолётов, а также в атомной технике.

Ракетное топливо 
Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в этой связи приложены значительные усилия для выявления бериллийсодержащих топлив имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия. 

Биологическая роль и физиологическое действие 
В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.

Бериллий ядовит: Летучие (и растворимые) соединения бериллия, в том числе и пыль, содержащая соединения бериллия, высокотоксичны. Для воздуха ПДК в пересчёте на бериллий составляет 0,001 мг/м³. Бериллий обладает ярко выраженным аллергическим и канцерогенным действием. Вдыхание атмосферного воздуха, содержащего бериллий, приводит к тяжёлому заболеванию органов дыхания — бериллиозу 
 

Характеристика Mg (Магния) 

Магний — элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний (CAS-номер: 7439-95-4) — лёгкий, ковкий металл серебристо-белого цвета 
История открытия 
В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари называли её горькой солью, а также английской, или эпсомской солью. Минерал эпсомит имеет состав MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт получил новый металл, названный им австрием, восстановлением углём из белой магнезии. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнёно железом.

Впервые был выделен в чистом виде сэром Гемфри Дэви в 1808 году дистилляцией ртути из магниевой амальгамы, которую он получил электролизом полужидкой смеси оксида магния и ртути.

Нахождение в природе 
Кларк магния 19 кг/т. Это один из самых распространённых элементов земной коры. Большие количества магния находятся в морской воде. Главными видами нахождения магнезиального сырья являются:

  • морская вода — (Mg 0,12-0,13 %),
  • карналлит — MgCl2 • KCl • 6H2O (Mg 8,7 %),
  • бишофит — MgCl2 • 6H2O (Mg 11,9 %),
  • кизерит — MgSO4 • H2O (Mg 17,6 %),
  • эпсомит — MgSO4 • 7H2O (Mg 16,3 %),
  • каинит — KCl • MgSO4 • 3H2O (Mg 9,8 %),
  • магнезит — MgCO3 (Mg 28,7 %),
  • доломит — CaCO3·MgCO3 (Mg 13,1 %),
  • брусит — Mg(OH)2 (Mg 41,6 %).

Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения ископаемых солей карналлита осадочного происхождения известны во многих странах.

Магнезит образуется преимущественно в гидротермальных условиях и относится к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они ассоциируют с карбонатными толщами и большинство из них имеет докембрийский или пермский возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.

Типы месторождений 
Природные источники магния:

  • ископаемые минеральные отложения (магнезиальные и калийно-магнезиальные карбонаты: доломит, магнезит),
  • морская вода,
  • рассолы (рапа соляных озёр).

Большая часть мировой добычи магния сосредоточена в США (43 %), странах СНГ (26 %) и Норвегии (17 %), возрастает доля Китая.

Получение 
Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl2 (электролиз) = Mg + Cl2.

Расплавленный металл периодически отбирают из электролизной ванны, а в неё добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много (около 0,1 %) примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс:

MgO + C = Mg + CO

Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO3·MgCO3 = CaO + MgO + 2CO2,

2MgO + CaO + Si = CaSiO3 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырьё, но и морскую воду.

Физические свойства 
Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Плотность магния при 20 °C — 1,738 г/см³, температура плавления металла tпл = 650 °C, температура кипения tкип = 1090 °C, теплопроводность при 20 °C — 156 Вт/(м·К).

Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.

 
Магний (Mg) — по свойствам связан диагональным соотношением с Li. Абсолютно необходим для нормальной жизнедеятельности в виде иона Mg2+. В клетках растений в основном хелатирован 4 азотами пиррольиых колец циклической структуры хлорофилла. В организме животных служит кофактором всех реакций с участием АТФ. Является противоионом для стабилизации двойной спирали ДНК, в каждом звене цепи которой содержатся отрицательно заряженные фосфатные группировки. Mg2+ также необходим для нервно-мышечной передачи и мышечного сокращения.

 

Наиболее часто недостаток магния (в норме содержащегося в плазме крови в концентрации 0,9 мМ) наблюдается при алкоголизме, сопровождаясь также накоплением Са2+. При избытке магния развиваются слабовыраженные токсические реакции. Прием больших количеств солей Mg2+ вызывает рвоту.

 

Интересен факт многократного усиления ферментативной активности креатиикиназы под влиянием единственного парамагнитного изотопа 25Mg с некомпенсированным ядерным спином (+5/2). В природе он составляет 10% атомов магния. Остальные стабильные изотопы Mg, имеющие нулевой ядерный спин и не реагирующие на магнитное поле, активируют указанный фермент в несколько раз слабее. Стимуляция креатинкиназы важна для стимулирования АТФ-генерирующей деятельности митохондрий, например, при острой ишемии миокарда. Можно предполагать, что применение парамагнитного изотопа позволит значительно увеличить эффективность препаратов Mg. 
Химические свойства 
Раскаленный магний реагирует с водой: 
Mg + Н2О = MgO + H2↑ + 75 ккал 
Возможна также реакция: 
Mg + 2Н2О = Mg(OH)2 + H2↑ + 80,52 ккал 
Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода: 
Mg + 2HCl = MgCl2 + H2↑ 
При нагревании на воздухе магний сгорает с образованием оксида и небольшого количества нитрида. При этом выделяется большое количество теплоты и световой энергии: 
2Mg + О2 = 2MgO 
3Mg + N2 = Mg3N2 
Магний может гореть даже в углекислом газе: 
2Mg + CO2 = 2MgO + C

Горящий магний нельзя тушить водой.

Смесь порошкового магния с перманганатом калия KMnO4 — взрывчатое вещество

Применение 
Применяется для восстановления металлического титана из тетрахлорида титана. Используется для получения лёгких и сверхлёгких сплавов (самолётостроение, производство автомобилей), а также для изготовления осветительных и зажигательных ракет.

Сплавы 
Сплавы на основе магния являются важным конструкционным материалом в авиационной и автомобильной промышленности благодаря их лёгкости и прочности. Цены на магний в слитках в 2006 году составили в среднем 3 долл/кг. В 2012 году цены на магний составляют порядка 2,8-2,9 долл./кг.

Химические источники тока

Магний в виде чистого металла, а также его химические соединения (бромид, перхлорат) применяются для производства очень мощных резервных электрических батарей (например, магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент, хлористомедно-магниевый элемент, магний-ванадиевый элемент и др.) и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент, магний-м-ДНБ элемент и др.). Химические источники тока на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высоким разрядным напряжением.

Соединения 
Гидрид магния — один из наиболее ёмких аккумуляторов водорода, применяемых для его хранения.

Огнеупорные материалы 
Оксид магния MgO применяется в качестве огнеупорного материала для производства тиглей и специальной футеровки металлургических печей.

Перхлорат магния, Mg(ClO4)2 — (ангидрон) применяется для глубокой осушки газов в лабораториях, и в качестве электролита для химических источников тока с участием магния.

Фторид магния MgF2 — в виде синтетических монокристаллов применяется в оптике (линзы, призмы).

Бромид магния MgBr2 — в качестве электролита для химических резервных источников тока.

Военное дело 
Свойство магния гореть белым ослепительным пламенем широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. В смеси с соответствующими окислителями он также является основным компонентом заряда светошумовых боеприпасов.

Медицина 
Магний является жизненно-важным элементом, который находится во всех тканях организма и необходим для нормального функционирования клеток. Участвует в большинстве реакций обмена веществ, в регуляции передачи нервных импульсов и в сокращении мышц, оказывает спазмолитическое и антиагрегантное действие. Оксид и соли магния традиционно применяется в медицине в кардиологии, неврологии и гастроэнтерологии (аспаркам, сульфат магния, цитрат магния. Наиболее интересным природным ресурсом магния является минерал бишофит). Оказалось, что магниевые эффекты бишофита в первую очередь проявляются при транскутанном (через кожном) применении в лечении патологии опорно-двигательного аппарата. Бишофитотерапия использует биологические эффекты природного магния в лечении и реабилитации широкого круга заболеваний, в первую очередь — позвоночника и суставов, последствий травм, нервной и сердечно-сосудистой систем.

Информация о работе Общая характеристика металлов главной подгруппы II группы