Области применения пластмасс

Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 14:03, реферат

Краткое описание

В настоящее время пластмассы получили широчайшей распространение. Причиной такого распространения являются их низкая цена и легкость переработки, а также свойства, которые в некоторых случаях уникальны. Пластмассы применяют в электротехнике, авиастроении, ракетной и космической технике, машиностроении, производстве мебели, легкой и пищевой промышленности, в медицине и строительстве, - в общем, пластмассы используются практически во всех отраслях народного хозяйства.

Прикрепленные файлы: 1 файл

Реферат. Применение пластмасс.docx

— 95.93 Кб (Скачать документ)

Минеральные наполнители придают  пластмассе водостойкость, химическую стойкость, повышенные электроизоляционные  свойства, устойчивость к тропическому климату.

Пластмассы с порошковыми наполнителями  широко применяют в машиностроении для изготовления различной инструментальной оснастки, вытяжных и формовочных  штампов, корпусов станочных, сборочных  и контрольных приспособлений, литейных моделей, копиров и др.

Пластмассы с волокнистыми наполнителями. К этой группе пластмасс относятся волокниты, асбоволокниты, стекловолокниты. 

Волокниты применяют для деталей общего технического назначения с повышенной устойчивостью к ударным нагрузкам, работающим на изгиб и кручение.

Асбоволокниты обладают повышенной теплостойкостью (свыше 200ºС) и ударопрочностью, устойчивостью к кислым средам и высокими фрикционными свойствами. Асбоволокниты используются в качестве материала тормозных устройств (колодки, накладки, диски подъемных кранов, вагонов, автомобилей и др.); из материала фаолита (разновидность асбоволокнитов) получают кислотоупорные аппараты, ванны, трубы.

Стекловолокниты получают продавливанием расплавленной стекломассы через фильеры. В качестве наполнителя применяют непрерывное стекловолокно или короткое волокно. Обладают хорошими прочностными характеристиками. Используются для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпуса приборов).

Слоистые пластмассы являются силовыми конструкционными и поделочными материалами. Листовые наполнители, уложенные слоями, придают пластику анизотропность. Материалы выпускаются в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали.

Гетинакс по назначению подразделяют на электротехнический и декоративный, который может иметь различные цвета и текстуру, имитирующую древесные породы. Пластик можно применять при температуре 120 - 140ºС. Он устойчив к действию химикатов, растворителей, пищевых продуктов; используется для внутренней облицовки пассажирских кабин самолетов, железнодорожных вагонов, кают судов, в строительстве.

Текстолит. Среди слоистых пластиков обладает наибольшей способностью поглощать вибрационные нагрузки, хорошо сопротивляться раскалыванию. Текстолит применяют для зубчатых колес. Текстолитовые вкладыши подшипников служат в 10 – 15 раз дольше бронзовых. Однако рабочая температура текстолитовых подшипников невысока (80 - 90ºС). Они применяются в прокатных станах, центробежных насосах, турбинах и др.

Древеснослоистые пластики (ДСП) состоят из тонких листов древесного шпона, пропитанных феноло- и крезольно-формальдегидными смолами и спрессованных в виде листов и плит. Древеснослоистые пластики имеют высокие физико-механические свойства, низкий коэффициент трения и с успехом заменяют текстолит, а также цветные металлы и сплавы. Недостатком ДСП является чувствительность к влаге. Из ДСП изготавливают шкивы, втулки, ползуны лесопильных рам, корпусы насосов, подшипники, детали автомобилей, железнодорожных вагонов, лодок и детали текстильных машин.

Асботекстолит является конструкционным, фрикционным термоизоляционным материалом. Обладает высокой теплостойкостью (300ºС) и механической прочностью. Из асботекстолита делают лопатки ротационных бензонасосов, фрикционные диски и тормозные колодки. Асботекстолит выдерживает кратковременно высокие температуры и поэтому применяется в качестве теплозащитного теплоизоляционного материала.

 

1.3. Газонаполненные пластмассы.

 

Газонаполненные пластмассы представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз. Такие пластмассы имеют чрезвычайно малую массу и высокие теплозвукоизоляционные характеристики. В зависимости от физической структуры газонаполненные пластмассы делят на две группы:

1. Пенопласты – материалы с  ячеистой структурой, в которых  газообразные наполнители изолированы  друг от друга и от окружающей  среды тонкими слоями полимерного  связующего;

2. Поропласты – губчатые материалы  с открытопористой структурой, вследствие чего присутствующие в них газообразные включения свободно сообщаются друг с другом и с окружающей атмосферой.

Пенопласты получили наиболее широкое применение. Замкнуто–ячеистая структура обеспечивает хорошую плавучесть и высокие теплоизоляционные свойства. Механическая плотность пенопластов невысока и зависит от плотности материала. Пенопласты применяют для теплоизоляции кабин, контейнеров, приборов, рефрижераторов, труб и т. д. Широкое применение пенопласты получили в строительстве и при производстве труднозатопляемых изделий. Используются в авиастроении, судостроении, на железнодорожном транспорте и т. д.

Сотопласты изготовляют из тонких листовых материалов. Материалом для сотопластов служат ткани (стеклянные, кремнеземные, угольные). Сотопласты имеют достаточно высокие теплоизоляционные свойства. Они служат легкими заполнителями многослойных панелей, применяемых в авиа- и судостроении для несущих конструкций; при создании наружной теплозащиты и теплоизоляции космических кораблей; в антенных обтекателях самолетов и др.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Свойства и производство  пластмасс

 

Пластмассы  представляют собой материалы на основе природных или синтетических  полимеров, способные приобретать  заданную форму при нагревании и  под давлением и устойчиво  сохранять ее после охлаждения.

Органические  искусственные вещества - полимеры - построены, как известно, из макромолекул многочисленных малых основных молекул (мономеров). Процесс их образования  зависит от разных факторов - отсюда широкие возможности варьирования и комбинирования, а следовательно и неисчерпаемые возможности получения продуктов с самыми разнообразными свойствами. Основные процессы образования макромолекул - это полимеризация, ступенчатая.

Структурные формулы некоторых распространенных полимеров полимеризация (полиприсоединение) и поликонденсация.

 

Название полимера

Структура полимера

Мочевиноформальдегидная смола

Полиамидная смола

Полиакрилат

Полиметилметакрилат


 

Полимеризация - это химическая реакция образования  высокомолекулярных продуктов вследствие сцепления простых ненасыщенных органических мономеров, протекающая без отщепления каких либо частей молекул. Пример: n·этилен à полиэтилен.

Полиприсоединение - это объединение различных основных молекул в высокомолекулярные продукты без отщепления третьего вещества. Пример: x·диизоцианат (OCN (R) nNCO) + y·многоатомный спирт à полиуретан.

Поликонденсация - реакция образования высокомолекулярного  вещества из мономеров различного вида, которая сопровождается отщеплением  низкомолекулярного продукта (часто  молекул воды). Пример: x·формальдегид + y·мочевина ( (NH2) 2CO) à мочевиноформальдегидная смола + z·вода.

Физические  и химические свойства полимеров  обусловлены как особенностями  химического состава и молекулярного  строения этих веществ, так и их "надмолекулярной" структурой. Так химическая стойкость  полиэтилена (устойчивость к действию агрессивных сред) определяется химической формулой мономера (-CH2-CH2 -), не содержащего после полимеризации двойных связей, а физические свойства, например эластичность и непроницаемость,- его надмолекулярной структурой.

Рассмотрим  первый аспект проблемы - химический состав и молекулярное строение полимеров.


 

В соответствие с местом в периодической системе  углерод четырехвалентен. Главной  его особенностью является способность  образовывать вещества, в которых  атомы углерода связаны между  собой. При этом могут возникать как цепочные (в виде простых или разветвленных цепей), так и циклические соединения:

В зависимости  от числа атомов и их взаимного  расположения изменяются и свойства вещества. Например, чем больше атомов входит в соединение, тем менее  оно летучее.

Свойства  соединений углерода в большой степени  зависят от характера связей между  его отдельными атомами. Способность  атомов углерода образовывать цепочки, кольца или сложные решетки, в  которые вклинены другие элементы, обуславливает существование свыше  трех миллионов известных в настоящее  время соединений углерода.

Благодаря изменению структур молекул и  их разнообразным комбинациям ассортимент  пластмасс значительно расширяется  за счет создания пластмасс с желаемыми  свойствами. Хорошим примером реализации таких возможностей являются АБС-полимеры. Их название образовано от начальных групп трех основных мономеров: акрилонитрил (CH2=CH-CN) (А) вносит свою долю в химическую устойчивость продукта, бутадиен (Б) сообщает ему сопротивление ударам, стирол (С) делает материал твердым и легко поддающимся термопластической обработке. Получают АБС-полимеры исключительно путем привитой полимеризации. Привитая полимеризация - процесс образования высокомолекулярных соединений, в ходе которого на основную цепь полимера прививаются дополнительные боковые цепь другого химического характера. Варьируя доли отдельных мономеров и условия полимеризации можно изготовить продукты с различными свойствами. Основное назначение АБС-полимеров - замещать металлы в конструкциях и аппаратах.

Помимо  полимера в состав пластмасс часто  входят различные добавки: наполнители, пластификаторы, стабилизаторы, красители  и другие компоненты.

Наполнители - это вещества, служащие для придания пластмассе необходимых эксплуатационных свойств (например, высокой прочности, термостойкости и др.), облегчения переработки, снижения стоимости. В качестве наполнителей применяют опилки, сажу, графит, стеклянные, асбестовые, химические волокна. В слоистых пластиках (пластмассы, упрочненные параллельно расположенными слоями наполнителя) роль наполнителя выполняют бумага, ткани; в пенопластах газы, например азот. Применение наполнителей снижает стоимость пластмассы. Ведь, как правило, наполнители - это отходы различных производств, они значительно дешевле самого полимера.

Пластификаторы  вводят в состав пластмассы с целью  повышения пластичности или эластичности полимера и готовой пластмассы. В  качестве пластификаторов используют, главным образом, нелетучие, химически  инертные вещества, например дибутилфталат (C6H4 (COOC4H9) 2), нефтяные масла. Молекулы пластификатора, например глицерина ослабляют связи между макромолекулами полимера. Это облегчает процесс формования пластмассы, позволяет проводить его при меньшей температуре.

Стабилизаторы - вещества, тормозящие старение пластмассы, происходящее, как правило, в результате деструкции. Деструкция полимеров - процесс  разрушения их молекул под действием  тепла, кислорода, света и др. В  результате деструкции изменяются многие свойства полимеров и часто они  становятся непригодными для использования. Стабилизаторы защищают полимеры от окисления (ароматические амины, фенолы), действия атмосферы, озона (воски), предохраняют полимеры от воздействия света (сажа) и ультрафиолетового света, защищают от разрушения под действием ионизирующих излучений (ароматические углеводороды, амины).

Нередко одно и то же вещество в пластмассе может выполнять одновременно несколько  функций. Так фосфаты удается  использовать и как антипирены (вещества понижающие горючесть материалов органического  происхождения), и как пластификаторы. Наполнитель может "работать" и как антиокислитель, и как  пигмент, а также способствовать непроницаемости материала.

Пластмассы  различаются по своим эксплуатационным свойствам (например, пластмассы с высоким  электрическим сопротивлением, атмосферо-, термо-, или огнестойкие), по природе наполнителя (например, стеклопластики, графитопласты, газонаполненные пластмассы), по способу расположения наполнителя в материале (слоистые пластики, волокниты - пластмассы, состоящие из рубленого волокна, пропитанного термореактивной синтетической смолой), а также по типу полимера (например, аминопласты, белковые пластики).

В зависимости  от характера превращений, происходящих с полимером при формовании, пластмассы подразделяются на реактопласты и термопласты. Реактопласты или термореактивные  пластмассы, подобно обожженной глине, не способны вернуть вновь пластичное состояние. Это связано с тем, что их переработка в изделие  сопровождается химическим взаимодействием  между макромолекулами и образованием пространственной структуры полимера. После такой переработки реактопласты утрачивают пластичность, становясь  неплавкими и нерастворимыми. Повторно переработать такой материал в новое  изделие уже невозможно. Обычно реактопласты - это фенольные, карбамидные и полиэфирные смолы. Чаще всего в исходном состоянии они представляют жидкости, которые при добавлении катализатора или нагревании необратимо затвердевают вследствие образования сшитых молекул.

Термопласты при нагревании вновь приобретают  пластичность, их можно формовать  многократно. Их легче превращать в  готовые изделия, можно рационально  обрабатывать и перерабатывать методами литья под давлением, вакуумной  формовки или простой формовки. К  термопластам относятся полиэтилен, поливинилхлорид, полистирол и АБС-полимеры.

Пространство  между термопластами и реактопластами, как и между натуральными и  синтетическими продуктами, заполнено  сплошным спектром пластмасс, изготовленных "по специальным заказам". Они  имеют порой необычные комбинации свойств. Так, разработаны термопласты  с обратимым образованием сшитых молекул. При температуре обработки они могут быть термопластичными, а при температуре применения готового изделия, которая лежит намного ниже, они становятся термореактивными.

Информация о работе Области применения пластмасс