Наночастици и их характеристики

Автор работы: Пользователь скрыл имя, 28 Июня 2015 в 10:46, реферат

Краткое описание

Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

Прикрепленные файлы: 1 файл

еност.docx

— 40.91 Кб (Скачать документ)

Содержание

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

С одной стороны, нанотехнологии уже нашли сферы применения, с другой – они остаются для большинства населения областью научной фантастики. В будущем значение нанотехнологий будет только расти. В специализированной области это будет пробуждать интерес и стимулировать проведение исследовательских и опытно-конструкторских работ, а также работ по нахождению новых областей применения нанотехнологий.

В данной курсовой работе рассматриваются некоторые свойства наночастиц различных химических элементов и их соединений. Представлены некоторые достижения на основе наночастиц.

 

 

 

 

 

 

 

 

 

 

Понятия наночастицы

Наночастица (англ. nanoparticle) — изолированный твёрдофазный объект, имеющий отчётливо выраженную границу с окружающей средой, размеры которого во всех трех измерениях составляют от 1 до 100 нм.

Наночастицы — один из наиболее общих терминов для обозначения изолированных ультрадисперсных объектов, во многом дублирующий ранее известные термины (коллоидные частицы, ультрадисперсные частицы), но отличающийся от них чётко определёнными размерными границами.          Твердые частицы размером менее 1 нм обычно относят к кластерам, более 100 нм — к субмикронным частицам.

          В то же время, в некоторых областях знания, в частности, в биомедицинских нанотехнологиях наночастицами зачастую условно называют и объекты диаметром до нескольких сотен нанометров, малый размер которых также играет значительную роль в их свойствах и применении (в частности, обеспечивая повышенную всасываемость слизистой при пероральном введении и EPR-эффект как «пассивную» адресациюсистемно вводимых противоопухолевых препаратов).

В последние два десятилетия в научную лексику стремительно «ворвались» ряд новых слов с префиксом «нано»: наноструктура, нанотехнология, наноматериал, нанокластер, нанохимия, наноразмерный материал, наноколлоиды, нанореактор и т.п. Издается ряд новых журналов, посвященных исключительно этой тематике, появились монографии, в названии которых присутствует префикс «нано», а также «нано»-профилированные институты, кафедры и отдельные лаборатории, проводятся многочисленные конференции. В большинстве случаев новые названия даны давно известным объектам или явлениям. Но есть объекты, которых по-существу не было в арсенале исследователей еще 20 лет назад  и без которых сегодня уже невозможно представить современное развитие науки – это наночастицы во всем их многообразии начиная от фуллеренов, нанотрубок, нанопроводов до квантовых точек и квантовых корралов.

Уменьшение частиц до нанометровых размеров приводит к проявлению в них так называемых «квантовых размерных эффектов», когда размеры исследуемых объектов сравнимы с длиной де-бройлевской волны электронов, фононов и экситонов. В сфероидальных наночастицах имеет место трёхмерное квантование уровней, что позволяет говорить, в зависимости от состава наночастиц, об образовании «квантовых точек», «квантовых кристаллитов» и других объектов с нулевой размерностью.

Одной из главных причин изменения физических и химических свойств малых частиц по мере уменьшения их размеров является рост относительной доли «поверхностных» атомов, находящихся в иных условиях (координационное число, симметрия локального окружения и т.п.), нежели атомы внутри объемной фазы. С энергетической точки зрения уменьшение размеров частицы приводит к возрастанию роли поверхностной энергии.

В настоящее время уникальные физические свойства наночастиц, возникающие за счёт поверхностных или квантово-размерных эффектов, являются объектом интенсивных исследований . Особое место в этом ряду занимают магнитные характеристики наночастиц; здесь наиболее отчётливо выявлены различия (иногда очень существенные) между компактными магнитными материалами и соответствующими наночастицами и создана теоретическая база, способная объяснить многие из наблюдаемых эффектов.

Каков минимальный размер постоянного магнита? Каким методом и на основе каких химических элементов можно создать такой магнит? Можно ли получить материал, где бы эти мельчайшие магнитики были распределены в немагнитной среде, и каковы будут их магнитные характеристики? Эти и другие вопросы, поставленные еще в 30-е годы, стимулировали в дальнейшем многочисленные теоретические и экспериментальные исследования.

За последние годы в области магнитных наноматериалов произошли изменения, которые, без преувеличения, можно назвать революционными.                            Связано это в первую очередь с разработкой эффективных методов получения и стабилизации магнитных частиц нанометровых размеров и параллельным развитием физических методов характеризации и исследования частиц таких размеров. Стало возможным получение нанометровых металлических или оксидных частиц не только в виде феррожидкостей, технология приготовления которых хорошо разработана с 60-х годов прошлого века , но и внедрёнными в различные «жесткие» матрицы (полимеры, цеолиты и др.). На базе таких материалов обнаружен ряд необычных явлений, таких как гигантское магнитосопротивление, аномально большой магнитокалорический эффект и др. Стандартные  характеристики магнитных материалов (намагниченность насыщения, коэрцитивная сила и т.п.) в случае наночастиц как правило не хуже, а часто и превосходят, аналогичные параметры объемных материалов.

По-видимому, впервые магнитные характеристики материала, состоящего из изолированных друг от друга в немагнитной твердой диэлектрической матрице магнитных наночастиц (3-10 нм) были описаны в 1980 г в работе ; наличие наночастиц и их состав были установлены тогда методами рентгеновского малоуглового рассеяния и мессбауэровской спектроскопии . В дальнейшем эти образцы были повторно исследованы современными методами и полученные в ранних работах результаты в основном подтвердились . В настоящее время физика и химия наночастиц в твёрдых матрицах достаточно хорошо развиты и здесь удалось надежно устанавить фунаментальные различия ряда физических параметров для наночастицы и соответствующего компактного материала. Показано, что в наночастицах намагниченность на атом и магнитная анизотропия может быть заметно больше, чем в массивном образце, а отличия в температурах Кюри и Нееля могут составить сотни градусов. Иными словами, меняя размеры, форму, состав, строение наночастиц можно в определенных пределах управлять магнитными характеристиками материалов на их основе. Все это позволяет надеяться на использование материалов, содержащих наночастицы, в перспективных системах записи и хранения информации, для создания новых постоянных магнитов, в системах магнитного охлаждения, в качестве магнитных сенсоров и т.п. О прикладных аспектах современного состояния и перспективах технологии магнитной записи можно прочесть в . Отметим только, что в применяемых в настоящее время магнитных лентах или дисках в качестве сред для магнитной записи информации чаще всего используют порошки микронных размеров состава g-Fe2O3, Co-g-Fe2O3, Fe или Fe-Co, и для записи 1 бита информации используется примерно 109 атомов [8], в то время как в наночастице диаметром 10 нм содержится 103-104 атомов.

Грубая схема характера изменения магнитных свойств при уменьшении размеров образца ферромагнетика от макроскопических, когда число атомов в образце не менее ~ 6.02×1023, до атомных (в пределе - до одного атома - иона) представлена в табл.1.

Надо иметь в виду, что на магнитные свойства вещества оказывают влияние внешние условия - температура, давление, а для групп Б, В еще локальное окружение частицы, среда в которой она находится - кристаллическая (или аморфная) объемная матрица, подложка для пленки, локальное кристаллического окружение для отдельного атома. Важна и химическая природа элемента: очевидно, что магнитные свойства кобальтовых и гадолиниевых частиц одинакового размера могут оказаться, вообще говоря, различны (см.).

В нестехиометрических соединениях, содержащих хотя бы один ферромагнитный компонент, из-за флуктуаций концентрации возможно появление магнитных кластеров - областей, в которых преобладают ферромагнитные взаимодействия между атомами. При высоких температурах такие соединения ведут себя как ансамбль суперпарамагнитных частиц. Если взаимодействие между кластерами также ферромагнитно, то при понижении температуры происходит обычный ферромагнитный переход. Если же магнитные кластеры оказываются в той же ситуации, что и отдельные магнитные моменты в «спиновых стеклах» (т.е. существует беспорядок в знаке обменного взаимодействия или локальной магнитной анизотропии), то при понижении температуры моменты кластеров «замерзают» в хаотических ориентациях. Системы с таким магнитным поведением называются миктомагнетиками (mictomagnets), или кластерными стеклами. Кластерные стекла отличаются высокой чувствительностью к условиям приготовления и последующей термообработки. Для них характерен заметный температурный и магнитный гистерезис, большая остаточная намагниченность, другие эффекты необратимости магнитных свойств.

Магнитные наночастицы широко распространены в природе и встречаются во многих биологических объектах. Так, например, высокоупорядоченные квази-одномерные цепочечные ансамбли магнитных наночастиц оксидов железа (Fe3O4 с примесью g-Fe2O3) присутствуют в магнитных бактериях magnetotactic spirillum и играют важную функциональную роль, обеспечивая возможности ориентации бактерий в магнитном поле Земли .

Всё вышеизложенное служит основанием для повышенного интереса к магнитным наночастицам специалистов различного профиля. Задача данного обзора дать современное представление о физике и химии магнитных наночастиц, методах их получения и стабилизации, имея в виду возможности их использования в нанотехнологии для создания новых приборов и устройств различного назначения.

 

 

 

 

Наночастицы и новые свойства известных материалов

Развитие нанотехнологий ведет к появлению множества материалов, содержащих наноразмерные частицы. В настоящее время объем промышленного производства разнообразных наночастиц составляет уже сотни тысяч тонн. В наноразмерном состоянии многие вещества приобретают новые свойства и становятся в биологическом отношении весьма активными. Это, с одной стороны, открывает новые возможности использования наноматериалов в области биомедицины, фармакологии, производстве продуктов питания, при решении экологических и сельско-хозяйственных проблем. Но с другой стороны, высокая биологическая активность наночастиц несет в себе риски токсических эффектов. Установлено, что многие наночастицы обладают высокой проникающей способностью: легко проникают через мембраны клеток, обнаруживаются в клеточном ядре, преодолевают гематоэнцефалический барьер. Эффекты, вызванные попаданием наночастиц в мозг, печень и другие жизненно важные органы могут быть опасны для здоровья и жизни  человека и животных.

Наночастицы различных материалов применяются повсеместно – от лакокрасочной до пищевой промышленности. Наиболее "популярными" наночастицами являются частицы, из углерода (нанотрубки, фуллерены, графен), наночастицы оксида кремния, золота, серебра, а также оксида цинка и диоксида титана. Коротко обсудим, как они применяются и какими биологическими эффектами могут обладать.

Углеродные наночастицы, в частности, углеродные нанотрубки (УНТ) имеют уникальные электропроводные, теплопроводные, механические свойства, они находят широкое применение  в электронике, входят в состав композиционных материалов, применяющихся для самых различных целей – от производства материалов для теннисных ракеток до деталей для космических кораблей. Недавно было установлено, что агломераты УНТ могут образовываться в результате процессов сгорания углеводородов, в том числе бытового газа, и содержатся в пыли и воздухе. Способность УНТ преодолевать биологические мембраны, их способность проникать через гематоэнцефалический барьер служат основой для проведения исследований по использованию УНТ в качестве носителей для адресной доставки лекарств. Исследования о токсичности УНТ дают часто противоречивые результаты, и на сегодняшний момент данный вопрос является открытым.

Большую часть производимого наноразмерного SiO2 составляют нанопорошки аморфного диоксида кремния (НАДК). Они широко применяются в промышленности – в процессе изготовления теплоизоляторов, в производстве оптоэлектроники,  как компонент для получения термостойких красок,  лаков и клеев, а так же как стабилизаторы эмульсий. Также НАДК добавляют в покрытия для защиты от абразивных повреждений и царапин. Для того чтобы покрытие было прозрачным, используются нанопорошки со средним размером частиц менее 40 нм. Системная токсичность наночастиц диоксида кремния для животных и человека изучена слабо, однако широта спектра их применений ставит их на одно из первых мест в списке наночастиц, требующих детального изучения их биологических свойств.

Началом научных исследований коллоидного золота (КЗ) следует считать середину XIX века, когда вышла статья Майкла Фарадея, посвященная методам синтеза и свойствам КЗ. Фарадей впервые описал агрегацию КЗ в присутствии электролитов, защитный эффект желатина и других высокомолекулярных соединений, свойства тонких пленок КЗ. В настоящее время КЗ используется как объект для изучения оптических свойств частиц металлов, механизмов агрегации и стабилизации коллоидов. Известны примеры применения КЗ в медицине, в частности, в цветных реакциях на белки. Частицы золота применяют для изучения транспорта веществ в клетку путем эндоцитоза, для доставки генетического материала в клеточное ядро, а также для адресной доставки лекарственных веществ.  Промышленности наночастицы коллоидного золота используются при фотопечати и в производстве стекла и  красителей.

Коллоидное наносеребро – продукт, состоящий из наночастиц серебра, взвешенных в воде, содержащей стабилизатор коллоидной системы (Рисунок 1). Типичный размер наночастиц серебра – 5-50 нм. Области применения наночастиц серебра могут быть различными: спектрально-селективные покрытия для поглощения солнечной энергии, в качестве катализаторов химических реакций, для антимикробной стерилизации. Последняя область применения является наиболее важной и включает в себя производство различных средств упаковки, перевязки и водоэмульсионных красок и  эмалей. В настоящее время на основе коллоидного серебра выпускаются препараты - биологически активные добавки с антибактериальным, противовирусным и противогрибковым действием. Препараты коллоидного серебра являются одними из наиболее распространенных и широко используемых в индустрии наночастиц. Слоем наночастиц серебра покрывают столовые приборы, дверные ручки и даже клавиатуру и "мышки" для компьютеров. Наночастицы серебра используют при создании новых покрытий и косметики. Так же наноразмерное серебро используется для очистки воды и уничтожения болезнетворных микроорганизмов в фильтрах систем кондиционирования воздуха, в бассейнах, душах и других местах. Однако вопрос о влиянии наночастиц серебра на окружающую среду остается открытым.

Информация о работе Наночастици и их характеристики