Молекулааралық спектр

Автор работы: Пользователь скрыл имя, 30 Ноября 2014 в 20:49, реферат

Краткое описание

Молекүлалық спектрдің жалпы сипаты. Спектр — берілген физикалық шаманың қабылданатын әр түрлі мәндерінің жиынтығы. Спектрлі әдісте зерттелетін атомдар мен молекулалардың электро-магнигті толқындарды таңдап, талғап өзіне сіңіру, тарату қабілеті пайдаланылады. Бұл әдістер молекулаларда қатарынан жүретін бірнеше құбылыстарды білуге мүмкіндік береді, атап айтканда, электрондардың бір энергетикалық денгейден басқа деңгейге ауысуы, бүтіндей молекуладағы не оның құрамына енетін атом мен элементар бөлшектерде болатын тербелмелі не айналмалы қозғалыс энергиясының өзгеруі,

Прикрепленные файлы: 1 файл

Зат Құрылысы.docx

— 44.53 Кб (Скачать документ)



 

 

МОЛЕКУЛАЛЫҚ СПЕКТР

Молекүлалық спектрдің жалпы сипаты. Спектр — берілген физикалық шаманың қабылданатын әр түрлі мәндерінің жиынтығы. Спектрлі әдісте зерттелетін атомдар мен молекулалардың электро-магнигті толқындарды таңдап, талғап өзіне сіңіру, тарату қабілеті пайдаланылады. Бұл әдістер молекулаларда қатарынан жүретін бірнеше құбылыстарды білуге мүмкіндік береді, атап айтканда, электрондардың бір энергетикалық денгейден басқа деңгейге ауысуы, бүтіндей молекуладағы не оның құрамына енетін атом мен элементар бөлшектерде болатын тербелмелі не айналмалы қозғалыс энергиясының өзгеруі, т. б.

Оқшауланған атомдар мен молекулалардың қозғалысындағы ерекшеліктері олардың спектр құрылымынан көрінеді. Атомдарға сызық-сызық болып көрінетін спектрлер тән. Олардын әрбір сызығы жеке-жеке, анық және әрқайсысы белгілі бір жиіліктегі жағдайды білдіреді. Демек, атомдардағы шығару спектрлері. электрондардын қоздырылған энергетикалық деңгсйден ңегізгіге ауысқан кезінде пайда болады. Ондағы тербелістің жиілігі квантталу шартымен анықталады: ү= (Е, — Е0) : һ; (\v — тербеліс жиілігі; Е{ — қоздырылған деңгейдегі электрон энергиясы; Е0 —негізгі деңгейдегі электрон энергиясы; һ — Планк тұрактысы).

Атомдық спектрмен салыстырғанда, толық молекулалық спектрлер әлдеқайда күрделі. Олар бір-біріне өте жақын, жиі тшті кейде бірігіп, бүтін бір жолақ болып көрінетін көптеген сызықтан тұрады. Мұндай спектрлер молекуладағы өте күрделі және көптеген құбылыстар мен өзгерістерді көрсетеді, мысалы, ядроның тербелуі және оның тепе-теңдік жағдайдан ауытқуы, электрондардың ауысуы, кванттық өзгерістер, т. б.

Молекулалық спектрлер көбіне сіңіру спектрі болады, ал олар-

II

дан шығару спектрін алу қиын, өйткені молекула электромагниттік тербеліс шығару үшін, оны қоздыру керек. Әрине, күрделі молекула электрлік әсер не қыздыру кезінде қозудын орнына оңай ыдырап, жекеленген атомдарға жіктеледі және осы кезде пайда болатын шығару спектрі өте әлсіз де, оның есесіне сіңіру спектрі айқын, басым болады.

Молекула құрылысын спектрлік әдіспен зерттегенде, әр түрлі облыста сәйкес орналасқан толқын ұзындығымен жұмыс жүргізуге тура келеді. Әдетте, мынадай спектрлі облыстар белгілі: а) шамамен толқын ұзындығы 10~5— 10~4 см аралықтағы көзге көрінетін облыстағы және ультракүлгін (УҚ); б) толқын ұзьшдығы 10~4 — —10~3 см немесе 1—50 мк аралығындағы, көзге көрінбейтін инфра-қызыл (ИҚ) сәулелер; в) ИҚ сәуледен алыс 10~3— 10^2см немесе 50—250 мк аралығында орналасқан толқындар. Мұның әрі радио-спектроскопия әдісімен зерттелетін микротолқынды облыстар ор-наласады.

Молекуладағы атомдардың тербелуі. Молекулалардағы тербелмелі қозғалыстардың түрі сан алуан. Олардың арасындағы бірден бір қарапайым түрі — екі атом ядросын қосатын түзу сызық бойына орналасқандардың бір-біріне тәуелсіздік жағдайда тербелуі. Мұны серіппе арқылы байланыскан екі шардың механикалық тербелісімен ойша салыстыруға болады. Егер екі шарды бір-біріңе тартатын күш серіппе болса, молекулаларда мұндай серіппенің міндетін электрондардың өзара әсерінен пайда болатын валенттілік байланыс атқарады, ал екі ядроның бір-біріне әсерінен тебіліс пайда болады. Егер ядроларды тербеліске келтіретін энергия жеткілікті, тіпті көп болса, онда тербелмелі қозғалыс ангармоникалық заңдылыққа бағынады.

Жалпы молекуладағы атомдар тербелісін математика мен физикалық теориялармен дәлелдейді, оны қолданбалы спектроскопия әдістерімен байланыстыра қарастырайық. Инфрақызыл спектрлер (КҚС) инфрақызыл сәулелер үшін мөлдір, яғни сәулені тұтпайтын ас тұзы, калий бромиді сияқты кристалдар оптикалық аспаптары бар спектограф көмегімен жазылады. ИК-сәулелерді тіркеу олардың жылу әсеріне негізделіп, термоэлемент пен болометр және өзі жазатын құралдар, қондырғылар көмегімен жүзеге асады. Сұйық және газ күйіндегі қосылыстардың ИҚ-спектрлері бірден жазылып шығады, ал қатты заттардын спектрін жазу үшін оларды әуелі бір ортада ұсактап аламыз. Тәжірибеден алынған деректерге қараған-да, сіңіру ИҚ-спектрлері сіңіру энергиясының толқын жиілігіне не оның ұзындығына тәуелді болады.

ИК-спектрлерде кез келген толқын көрініп, анықтала бермейді, тек молекуланың дипольдік моментіне әсер етіп, оны өзгертуге себепкер болатын толқындар ғана жазылады. Бұл құбылыс оңай түсіндіріледі және молекуладағы атом құрылысы мен ИК-спектрлер арасындағы табиғи бірлікті, байланысты көрсетеді. Таралатын толқындардың бәрі де тербелмелі электромагниттік өрісі бар құбылыс және оның пайда болуы үшін электр зарядының осцилляциялануы шарт. Зерттелетін зат толқынды өзіне сіңірсе, онда оның

12

орнына осцилдеуші электр заряды пайда болады. Молекуладағы ядро электрондар ықпалынан пайда болатын электр өрісінің ортасында тербеледі. Мұндайда оң және теріс зарядтардың тез-тез қайта бөлініп, таралуы салдарынан дипольдік момент өзгерсе, онда дипольдік момент қандай жиілікте осцилденсе, ИК-сәуле де сондай жиілікпен таралады.

Валенттілік және деформациялық тербелістерді тек олардың өздеріне ғана тән жиілік шамасына орай айыруға болады. Мысалы, көміртек пен сутек арасындағы валенттілік тербеліс 2800— 3000 см~’ жиілікте кездеседі. Ал, валенттілік бұрыштарын деформациялауға жұмсалатын күш шамасы, осы байланысты созуға, алыстатуға қажетті күштен кем болады. Олай болса, сол көміртек пен сутек байланысын деформациялау тербелісі 1200—1400 см~’ жиілік шамасында екен, әрине, бұл валенттілік тербеліс жиілігінен екі еседей аз.

Көптеген қосылыстардын молекуланың спектрінде белгілі бір құрылымдағы топ қайталана берсе, онда оларға ортақ жиілікті бөліп көрсетуге болады. Бұл жиілік тек осы топтағы байланысты ғана сипаттайды. Айталық, көміртек пен көміртек арасындағы қос байланыс 1710 см-І, спирттегі оттек пен сутек арасындағы байланыс 3688 см~! жиілікте сипатталады. Барлық химиялық элементтерді, олардың арасындағы валенттілік байланыстар белгілі бір жиілікке сай келеді және ол анықтамалықтарда беріледі. ИК-спектрді пайдаланып құрамы, құрылысы әлі белгісіз кез келген қосылыстарды зерттеп, қандай химиялық элементтерден құралғанын және олардың қалай байланысқанын анықтауға болады. ИҚ-спектр көмегімен тек химиялық ғана емес физикалық зерттеулер де жүргізіледі, бұл әдіс ғылым лабораториясынан өндіріс лабораториясына да енуде.

Электронды-тербелмелі айналу спектрі. Егер заттардың бөлшектері инфрақызыл облыстан тыс жатқан жиіліктегі электромагниттік тербелісті талғап сіңіруге не таратуға қабілетті болса, элек-тронды парамагниттік резонанс спектрі (ЭПР) немесе ядролық магниттік резонанс (ЯМР) спектрі пайда болады. ЭПР спектрлері жұптаспай қалған электрондардың магниттік деңгейлерге ауысуына байланысты болса, ЯМР спектрлері ядролардың магниттік деңгейлерге ауысуына сәйкес.

ЯМР құбылысы магниттік өріске орналаскан магниттік ядролардың радиотолқындарды іріктеп, талғап сіңіруіне негізделген. Теориялық және тәжірибелік тұрғыдан алғанда ЯМР спектрі ЭПР спектріне көп ұқсас. Бұл екі құбылыстын бар айырмашылығы электрондар мен ядролардың магниттік моментіне байланыстылы-ғында, яғни ЯМР-де ядронын магниттік моменті, ЭПР-де электр-ондардың магниттік моменті негізгі болып саналады.

1944 жылы ЭПР әдісін Е. К. Завойский, 1946 жылы ЯМР құбылысын Блох пен Перселл ашты. Олардың екеуі де ғылыми зерттеулерде қолданылып, молекула спектрлерінде, оның құрамындағы аса нәзік байланыстарды көрсетіп, изомерияны анықтайды, сол сияқты күрделі молекуладағы әрбір валенттілік байланыстын ба-

13

ғытын нұсқап, атомдардың және атом тобының кеңістікте қалайша орналасқанын көрсетеді.

Комбинациялық шашырау спектрі (КРС). Газ, сұйық және кристалдардың молекулалары сәулені өзіне тек сідіріп не сыртка шығарып қана қоймай, оны шашыратуы да мүмкін. Егер бір затқа түскен және одан шашыраған сәуленің спектрлі құрылысы бірдей болса, мұндай жағдайдағы шашырауды релейлік немесе классикалық дейді. Бұған энергия алмаспайтын жағдайдағы молекулаға сәуле кванты әсер етіп, онымен серіппелі әрекеттесу басты себеп. Алайда молекула ядросын тербеліске келтіріп және онымен байланыстағы электрондар тығыздығын деформациялайтын сәуле шашырауы болуы мүмкін, сол сияқты нақ осы кездерде әлгі шашыраған сәуле жиілігі өзгереді. Сәуле түскен ортаның молекуласы оны шашыратқанда электромагниттік толқынның жиілігін өзгертсе, онда мұндай сәулені комбинациялық шашырату (КРС) деп атайды.

КРС құбылысын 1928 жылы Мандальштам және Ландсберг (ССРО) ашты. ҚРС спектрлері ИКС сияқты тербелмелік негізде болғанымен, ол көрінетін облысқа орналасқан. Демек, КРС спектрін фотопленка арқылы суретке түсіріп немесе электромеханикалық жолмен арнаулы торы бар қағаздарға жазып алуға болады.

КРС құбылысының табиғи негізі сәуленің кванттық теориясы тұрғысынан қарастырғанда оңай түсіндіріледі. Берілген зат арқылы сәуле өткенде, оның жиілігіндегі әрбір өзгеріс, сәулені шашыратушы молекуланың бір энергетикалық күйден басқаға ауысуына байланысты .Ал, сәулені сіңіргенде, көптеген молекулалар үшін қалыпты деп есептелетін төменгі энергетикалық деңгейден жоғарыға ауысу мүмкіндігі басым, өйткені шашыраған сәуле спектріндегі жиіліктер сәуленің өз жиілігінен аз.

ИҚ-спектрлерде дипольдік моменттері өзгермейтін симметриялық тербелістер көрінбейді. Ол тербелістер КРС спектрлерінде барынша айқын көрінеді, өйткені сәуленің комбинациялық шашырауы молекулалардағы дипольдік моменттің өзгеруімен емес, атомдар арасындағы тербеліс кезіндегі оның қайта-қайта элсктрондық поляризациялауымен анықталады. Сондықтан да жоғары симметриялық полюсті емес молекулалардың спектріндегі тербеліс жиілігін хабарлап, білдіретін бірден-бір құрал — КРС. Сондықтан, алынған деректерді пайдаланып, молекулалардың энергетикалық сипаттамасын, энтропиясын, жылу сыйымдылығын, т. б. есептеуге болады. Әйтсе де КРС пен ИКС бір мақсатқа жұмсалады. Бірінде көрінбеген спектр сызықшалары мен жолақшалары екіншісінде байқалады да, бірін-бірі толықтырады.

Молекулалық спектрлік талдау

Молекулалық спектр. Электронды, тербелмелі, айналмалы ауы-

су. Сапалық және сандық МСТ. Бугер-Ламберт-Бер заңы. ИҚ және КШ спектроскопияның тербелмелі әдісі. Спектроскопияның УК электронды әдісі.

Берілген энергетикалық деңгейлер арасында электронның ауысуы кезінде белгілі квант сәулесінің жұтылу немесе шығуы уақытында спектрлер пайда болады.

Заттың электромагниттік сәуле жұтылу, шығару және шашырауы нәтижесінде сәуленің спектрлі құрамын молекулалық спектроскопия зерттейді. Барлық жағдайда молекулалық спектр молекуланың әр түрлі энергетикалық күйлерінің арасындағы кванттық ауысуының нәтижесінде және олардың құрылысы туралы деректер құрамына кіреді.

Заттың молекуласы жарықты жұтқан кезде үш түрлі қозу немесе өтуде қатысады, яғни олар – электронды, тербелмелі және айналмалы. Егер молекуланың ішіндегі байланысты (байланыссыз) электрон сәулелену әсерінен негізгі күйден энергиясы жоғары бос молекулалық орбитальға өтсе, онда молекуланың электронды күйінің өзгеруімен сипатталады. Электронды ауысуға жоғары энергия және жиілігіне (209-627 кДж/моль) сәйкес болуы керек. Мұндай электронның қозуы үшін спектрдің көрінетін және ультракүлгін бөлігінде сәулелену болуы керек.

Химиялық байланысты құрайтын атомдар тепе-тең орында тұрған белгілі бір бағытта, жиілігі және амплитудасы ядроның ығысуымен анықталынатын үздіксіз тербелмелі қозғалыста орналасады.

Электромагниттік сәуленің барлық спектрі ұзын радиотолқыннан қатты γ-сәулеленуге дейін кең диапазонды жиілік аумағын алады. Молекулалық спектроскопия оның кішкентай бөлігін ғана алып жатыр. Спектрдің қандай аумағында орналасқанына байланысты оны ультракүлгін, инфрақызыл (ИҚ), көрінетін немесе микротолқынды деп атайды. Алғашқы үш аумақта орналасқан спектрді оптикалық деп атайды. Оларды жалпы және эксперименталды әдістердің алынуы арқылы байланыстырады

Сыртқы сәулелену көзінің электромагниттік тербеліс және молекулалар ішінде атомдардың тербелмелі қозғалыс жиіліктері сәйкес келсе, онда энергияның резонанстық жұтылуы байқалады. Нәтижесінде молекула төменгі (негізгі) тербелмелі деңгейден қандай да бір қозу деңгейіне өтеді. Тербелмелі ауысуға электрондыққа қарағанда аз энергия мен жиілік сәйкес келеді, сондықтан молекуланы тербелмелі қозған күйден өткізу үшін ұзын толқынды, инфрақызыл спектр аумағында сәулелендіру керек.

Молекулалар тербелістен басқа айналмалы қозғалысқа да қатысуы мүмкін (әрине, қатты денелерде және сұйықта айналмалы қозғалыс тежеледі және діріл түрінде беріледі, яғни маятниктік қозғалыс). Айналмалы қозғалыс жұтылу кезінде аз энергиясы болады, ол тербелмелі ауысуға ұқсас спектрдің микротолқынды және радио жиіліктік аумағында таза күйінде байқалады.

Электронды ауысуға тербеліс пен  айналмалы ауысу аралас жүреді, ал тербелмеліде – айналмалы ауысу. Сондықтан электронды спектрде құрылымы жұқа тербелмелі – айналмалы болады, ал тербелмеліде – айналмалы.

Спектроскопияның комбинациялық шашырауы (КШ) ИҚ-спектроскопия сияқты тербелмелі және айналмалы ауысумен жұмыс істейді. Бірақ КШ спектрінің табиғаты басқа. Классикалық тұрғыдан қарағанда жарықтың шашырауы индуктивтілігінен айнымалы электр ағынының электромагниттік толқыны затқа түскен кездегі молекулалық дипольдің тербелісінен шығарады. Егер поляризацияланған молекуланың өзгерісімен сипатталса, таңдау ережесіне бағынатын болса, онда КШ-спектрінде тербеліс айқын көрінеді. Олай болса, ИҚ-спектрінің жұтылуының шығуы молекуланың тербеліс кезінде өзіндік диполь моментінің өзгерісіне байланысты болады.

КШ әдісінің мәні болып үлгіні монохроматты жарықпен жарқырату саналады. Түзу бұрышпен түсетін жарыққа шашыраған сәулені спектрографқа енгізеді және шыққан КШ спектрін зерттейді. Шашыраған сәуленің екі түрлі табиғаты болады, жиілігі және энергиясы hν0 болатын түскен жарық кванты үлгінің молекулаларымен араласып, өзгермей шашырауы мүмкін (релей шашырауы), ал басқалары сондағы ауысуды қоздырады (молекулалар қозған күйге өтеді). Олай болса, негізгіден ν0 бірінші қозған ν1 тербелмелі күйге өткенде қозуға керекті энергия, яғни екіатомды молекуланың ΔΕ0,1=hνν тең болады.

Нәтижесінде молекуланың түскен жарық квантымен араласуынан спектрде стокс түзуіне сәйкес шашыраған жарықтың жиілігі ν0+νν болады. Басқа жағынан қарағанда қозған молекуланың түскен жарық квантымен hν0 араласуы негізгі күйге өткен кезде фотонмен жарқырайтын энергиясы h(ν0+νν) тең болатын өзінің бір бөлік энергиясын береді. Жиілігі (ν0+νν) болатын жарық шашырауына КШ-спектріндегі антистокс түзуі жауап береді.

Төмен энергиясы бар алыс инфрақызыл және микротолқын аумақтарда молекула ішінде айналмалы ауысуды көрсетеді. Микротолқынды спектроскопияның инфрақызылдан айырмашылығы жоғары дәлдікпен жиіліктерді өлшей алатындығында. Алыс инфрақызыл аумақ және микротолқынды жиілік аймағы 10-3-102 см-1 аумағын алып жатыр. Молекула құрамының электрлік және геометриясын зерттеу үшін кең спектралды интервал мен жоғарғы дәрежесі жеткілікті.

Тек қана айналмалы ауысуда қолданудың кемшілігі газ тәрізді күйде орналасқан заттардың спектрін алу саналады. Соған орай зерттелінетін молекулалар негізгі күйде тұрақты диполь моменті болуы тиіс.Негізгі тербелмелі спектрді (немесе тербелмелі - айналмалы) тіркеу мен талдау болып саналатын инфрақызыл спектроскопияның жұтылатын және шағылатын молекулалар спектрін зерттеу ең басты мақсаты. Тербелмелі және айналмалы спектрлерді зерттеу кезінде абсорбционды спектроскопия әдісі қолданылады. Үлкен аймақта өзгеретін температура мен қысым, көрінетін спектроскопияның аймағында боялған мөлдір емес және әр түрлі агрегаттық күйде орналасып зерттелінетін заттың аз ғана көлемі жұтылатын спектрді алуға керек. Физика-химиялық зерттеудің барысында мұндай әр түрлілік шарт абсорбционды ИҚ - спектроскопияның маңызы зор екенін көрсетеді.

Информация о работе Молекулааралық спектр