Межпредметные связи на уроках химии и биологии

Автор работы: Пользователь скрыл имя, 02 Июня 2015 в 21:57, курсовая работа

Краткое описание

За последние годы в биологии уделяется все больше внимания проблеме взаимосвязей между живым и неживым. Успешное развитие современных исследований на грани живого и неживого в области таких биологических дисциплин, как молекулярная биология, генетика, физиология растений и животных, экология, биохимия, биофизика, бионика, космическая биология, убедительно подтверждает необходимость более всестороннего изучения в школе закономерностей процессов жизни.

Содержание

1. Введение.
2. Понятие о межпредметных связях:
а) функции межпредметных связей;
б) виды межпредметных связей в содержании обучения;
в) планирование и пути реализации межпредметных связей в обучении.
3. Межпредметные связи в курсе биологии 6-9 классов.
4. Межпредметные связи в курсе химии
5. Заключение.
Литература

Прикрепленные файлы: 1 файл

ximija.doc

— 126.00 Кб (Скачать документ)

Они высказывают предположение о том, что при работе в мышечных волокнах также происходят реакции окисления, которые являются экзотермическими и сопровождаются выделением тепла. Учитель ставит дополнительный вопрос: "Почему при работе мышц тепла выделяется значительно больше, чем, например, при дыхании семян? " Обращаясь к курсу физики, учащиеся рассказывают о превращении механической энергии работающих мышц в тепловую. Механическая энергия образуется из энергии, заключенной в химических связях, она высвобождается при разрыве химических связей в процессе распада и окисления белков и углеводов в мышечных волокнах. Плазмам крови при этом нагревается. Кровь уносит образовавшиеся продукты распада - двуокись углерода, воду и другие. Вода, испаряясь с поверхности тела в виде пота, уносит с собой избыток тепла (об испарении и его роли в поддержании нормальной температуры тела учащиеся узнают при изучении природоведения, растений, животных, физики) . При раскрытии состава и свойств костей учитель ставит обобщенный проблемный вопрос: "Существует ли зависимость между составом химических веществ и свойствами физических тел природы? " Учащиеся вспоминают сведения из курса биологии 6 класса о составе и свойствах семян, из курса физической географии - о свойствах разных горных пород, из курса химии - о кристаллогидратах, о свойствах солей и кислот, из курса физики - о кристаллических и аморфных телах, о проводниках и полупроводниках и др. Они приходят к выводу о существовании зависимости свойств тел от их состава в живой и неживой природе и высказывают предположения о свойствах костей, имеющих в своем составе органические и неорганические вещества. На уроке "Внутренняя среда организма и ее относительное постоянство" учащиеся решают проблемные вопросы межпредметного характера. Например: "Можно ли вводить в кровь воду, если известно, что плазма крови содержит около 80% воды? " Для ответа на этот вопрос можно продемонстрировать опыт с брусочками картофеля. Три одинаковых по размеру брусочка картофеля помещают: 1) в дистиллированную воду; 2) в 0,9%-ный раствор поваренной соли; 3) в 10%-ный раствор поваренной соли. Через некоторое время учащиеся отмечают, что размеры брусочков изменились в первом и третьем сосудах, а во втором - изменений не произошло. Опираясь на знания по химии о концентрации растворов солей и по физике о диффузии жидкостей, учащиеся делают правильный вывод о том, что вода перемещается в сторону большей концентрации солей: в первом случае в клетки картофеля, так как в их цитоплазме концентрация соли выше, чем в дистиллированной воде, и кусочек картофеля разбухает; в третьем случае - из клеток картофеля в соленый раствор, и кусочек картофеля сморщивается, отдавая воду; во втором случае - концентрация соли оказывается одинаковой в цитоплазме клеток и в окружающей среде и перемещения воды не происходит, кусочек картофеля не изменяется. По аналогии с данными результатами опыта учащиеся объясняют, почему нельзя вводить в кровь воду. Это приведет к разрушению эритроцитов из-за поступления в них воды.

Помимо проблемных вопросов учитель может успешно использовать количественные задачи межпредметного содержания, требующие для своего решения применения знаний по математике, физике, химии, географии. Например, на уроке "Движение крови по сосудам" в качестве домашнего задания учащимся предлагается задача: "Вычислите скорость крови в полых венах, зная их диаметр (около 2,5 см) , скорость крови в аорте (0,5 м/с) и диаметр аорты (около 2,5 см) ". Решая задачу, учащиеся устанавливают, что скорость крови в полых венах должна быть в 2 раза меньше, чем в аорте, то есть примерно 0,25 м/с, так как полых вен две - верхняя и нижняя, и, значит, суммарная площадь их сечения в 2 раза больше, чем площадь сечения аорты.

Решая подобные задачи, учащиеся совершают сложные познавательные и расчетные действия: 1) осознание сущности межпредметной задачи, понимание необходимости применения знаний из других предметов; 2) отбор и актуализация (приведение в "рабочее состояние) нужных знаний из других предметов; 3) их перенос в новую ситуацию, сопоставление знаний из смежных предметов; 4) синтез знаний, установление совместимости понятий, единиц измерения, расчетных действий, их выполнение; 5) получение результата, обобщение в выводах, закрепление понятий. Систематическое использование межпредметных познавательных задач в форме проблемных вопросов, количественных задач, практических заданий обеспечивает формирование умений учащихся устанавливать и усваивать связи между знаниями из различных предметов. В этом заключена важнейшая развивающая функция обучения биологии.

4. МЕЖПРЕДМЕТНЫЕ СВЯЗИ В КУРСЕ ХИМИИ.

По определению Д.П. Ерыгина: “Межпредметные связи можно рассматривать как дидактическую систему, которая отражает в школьных курсах объективно существующие взаимосвязи, обеспечивает посредством согласованного взаимодействия ее учебных компонентов осуществления целенаправленного процесса обучения школьников”.

Использование межпредметных связей – одна из наиболее сложных методических задач учителя химии. Она требует знания содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя химии с учителями других предметов.

 Использование  межпредметных связей для формирования  основ диалектико-материалистического  мировоззрения

Использование опорных знаний других предметов при изучении отдельных тем курса химии – важнейшее средство формирования диалектико-материалистического мировоззрения, целостного представления о явлениях природы и взаимосвязи между ними.

Решение этой задачи успешно осуществляется при совместной согласованной работе учителей различных дисциплин: природоведения, химии, физики, географии, биологии, математики, обществоведения, истории и др. Рассмотрим те межпредметные связи курса химии, которые касаются формирования основ научно-материалистического мировоззрения учащихся. Рассмотрим это на отдельных примерах.

Изучению курса химии в 8 классе предшествуют курсы природоведения и ботаники, в которых учащиеся получают первоначальные представления о живой и неживой природе. Эти знания считаю опорными при рассмотрении различных разделов темы: “Первоначальные химические понятия”. Так, в курсе природоведения учащиеся изучали вещества: кислород, углекислый газ, воду и смеси веществ, песок, глину. В процессе обучения, они получили некоторые сведения об использовании угля, руды, нефти, способах разделения смесей. Для углубления и расширения этих знаний предлагаю восьмиклассникам вопросы:

1. Какие вещества, изученные  вами в предыдущих классах, относятся  к чистым веществам, а какие  к смесям?

2. Почему не имеют  смысла выражения “молекула воздуха”, “молекула гранита”, “молекула нефти”?

3. Как отделить речной  песок от опилок?

4. Почему нельзя фильтрованием  выделить из раствора поваренную  соль?

Обсуждение этих вопросов позволяет приступить к формированию понятий “тело”, “вещество” (как один из основных видов материи). Предлагаю учащимся самостоятельно, используя знания из курса физики, природоведения, географии привести примеры тел и веществ, обращаю внимание на их разнообразие, сходство и различие по свойствам. Подчеркиваю, что свойства веществ проявляются в конкретных условиях при том или ином воздействии на вещество и при взаимодействии его с другими веществами. Отмечаю, что отдельные свойства веществ при изменении условий при физических условиях могут меняться, но качества вещества будут оставаться прежними. Подчеркиваю, что под качеством понимается природа вещества, его индивидуальность. Внешне качество вещества проявляется в его свойствах. Обращаю внимание на то, что всякое изменение, превращение (химическая реакция) есть особый вид движения материи – химической формы движения. Вещества, отличающиеся по составу молекул, по разному ведут себя при химических реакциях.

При изучении простых и сложных веществ предлагаю ученикам вспомнить, с какими из них они ранее познакомились в курсе природоведения, каких веществ в природе больше – простых или сложных. Обращаю их внимание на разнообразие простых и сложных веществ.

Сообщая учащимся, что химические элементы делятся на две группы: металлы и неметаллы, мы отличаем наличие в них противоположных свойств и в то же время отсутствие резких границ между ними. Так формируется понятие о взаимосвязях веществ.

При рассмотрении понятия о валентности как свойстве атомов химических элементов, повторяем постоянство состава веществ и формируем понятие “количество”. Разъясняем, что количественные данные характеризуют отношения масс между элементами в сложном веществе в соотношении с их валентностью, относительной атомной и молекулярной массой, числом атомов в молекуле (для веществ с молекулярным строением), а также физические величины: плотность, температура кипения, замерзания и т.д. Через количественные соотношения входящих в состав данного вещества элементов выражается постоянство состава чистых веществ.

При изучении первоначальных химических понятий представляется возможность развить полученные в курсе природоведения 5 класса знания о веществе, в курсе физики 7 класса – физических и химических явлениях. Подчеркиваем реальность (объективное существование) атомов и молекул, существование веществ независимо от нашего сознания, объективность свойств веществ.

Рассматривая закон сохранения массы веществ, знакомлю учеников с количественной стороной химических процессов. В ходе этой работы обсуждаем вопросы:

1) Будет ли масса сульфида  железа (II) равна массе железа  и серы, вступивших в реакцию?

2) Каковы массы кислорода и водорода, полученные при разложении воды? Сравните массы веществ до и после реакции.

3) Как можно объяснить  сохранение массы веществ в  свете атомно-молекулярного учения?

4) Объясните, почему масса  угля и золы, образовавшихся при  горении дров, меньше массы сгоревших дров?

5) Какое значение имеет  закон сохранения массы веществ  для практического получения  веществ?

После обсуждения этих вопросов делаем вывод о неуничтожимости и несотворимости веществ (вечности материи).

Обращаем внимание на характеристику количественной и качественной сторон химической реакции. Указываем, что общее для всех типов химических реакций (разложение, замещение, соединение) – превращение веществ: возникновение из исходных новых веществ с новыми качествами, что и означает химическое движение. При этом подчеркивается, что масса веществ, которые вступили в химическую реакцию, всегда равна массе веществ, образовавшихся в результате реакции. Из закона сохранения массы веществ следует, что вещества не могут возникать из ничего или превращаться в ничто.

Изучая тему “Кислород. Оксиды. Горение” даем определения понятий “свойство” и “качество”, используя при этом знания о свойствах кислорода, полученные в курсе природоведения.

После изучения темы “Вода. Растворы. Основания.” предлагаю учащимся выполнить самостоятельные практические работы. При этом используем вещества, которые изучались в курсе природоведения (“Воздух”, “Вода” и др.), в курсе ботаники (“Дыхание семян”, “Дыхание листьев”), а также в курсе физики. Даю задание осуществить превращения:

C ® CO2 ® H2CO3 ® Na2CO3

Практические работы такого характера раскрывают взаимосвязь между различными классами химических соединений, развивают идею о познаваемости мира.

Исходя из превращений, осуществляемых при переходе от одних веществ к другим, даем определение понятия “развитие” (переход от одного качественного состояния к другому).

Большое научное и мировоззренческое значение имеют темы: “Периодический закон и периодическая система химических элементов Д.И. Менделеева”, “Строение атома”. Показываем, что все химические элементы имеют общую материальную основу: “общность элементов проявляется и том, что все они являются членами упорядоченной совокупности периодической системы элементов”.

На следующих уроках развиваются знания о строении атомов, полученные в курсе физики 7 класса. При этом изучение проводится так, чтобы оно способствовало формированию диалектико-материалистического мировоззрения. В ходе урока ученики убеждаются во внутреннем противоречии в структуре атома (атом как единство и борьба противоположностей): в его состав входит положительно заряженное ядро и отрицательно заряженные электроны. Единство этих противоположностей есть условие существования атомов как электронейтральных частиц.

Не менее важно и то, что межпредметные связи позволяют более целесообразно планировать изучение материала, экономить время, при этом знания по другим предметам конкретизируются, углубляются, обобщаются.

 Пути и методы  реализации межпредметных связей при изучении химии.

Вопрос о путях и методах реализации межпредметных связей – это один из аспектов общей проблемы совершенствования методов обучения. Отбор методов обучения провожу на основе содержания учебного материала и на подготовленности учащихся к изучению химии на уровне межпредметных связей.

На первых этапах обучения учащихся приемам установления межпредметных связей преобладает объяснительно-иллюстративный метод. Весь материал межпредметного содержания объясняю сама. Когда у учащихся сформируются умения работы с материалом межпредметного содержания, можно применять репродуктивный и частично-поисковый методы и творческие межпредметные задачи.

Информация о работе Межпредметные связи на уроках химии и биологии