Автор работы: Пользователь скрыл имя, 14 Ноября 2014 в 16:30, доклад
Хроматография (от греч. chroma, chromatos - цвет, краска), физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную. Хроматографический анализ является критерием однородности вещества: если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).
Хроматография (от греч. chroma, chromatos - цвет, краска), физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную. Хроматографический анализ является критерием однородности вещества: если каким-либо хроматографическим способом анализируемое вещество не разделилось, то его считают однородным (без примесей).
Принципиальным отличием хроматографических методов от других физико-химических методов анализа является возможность разделения близких по свойствам веществ. После разделения компоненты анализируемой смеси можно идентифицировать (установить природу) и количественно определять (массу, концентрацию) любыми химическими, физическими и физико-химическими методами.
История метода:
Хроматографический метод анализа был
впервые применён русским учёным-ботаником Михаилом Семеновичем
Цветом в 1900 году. Он использовал
колонку, заполненную карбонатом кальция
для разделения пигментов растительного
происхождения. Первое сообщение о разработке
метода хроматографии было сделано Цветом
30 декабря 1901 года на XI Съезде естествоиспытателей
и врачей в С.-Петербурге. Первая печатная
работа по хроматографии была опубликована
в 1903 году, в журнале Труды Варшавского
общества естествоиспытателей. Впервые
термин хроматография появился в двух печатных
работах Цвета в 1906 году, опубликованных
в немецком журнале Berichte der Deutschen Botanischen
Gesellschaft. В 1907 году Цвет демонстрирует Немецкому
Ботаническому обществу образец хроматографа
— прибора для осуществления процесса
хроматографии. В 1910-1930 годы метод был
незаслуженно забыт и практически не развивался.
В 1952 году Дж. Мартину и Р. Синджу была присуждена
Нобелевская премия по химии за создание
метода распределительной хроматографии.
С середины 20 века и до наших дней хроматография
интенсивно развивалась и стала одним
из наиболее широко применяемых методов
анализа.
Хроматография широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в т. ч. промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.
В некоторых случаях для идентификации веществ используется хроматография в сочетании с другими физико-химическими и физическими методами, например с масс-спектрометрией, ИК-, УФ-спектроскопией и др. Для расшифровки хроматограмм и выбора условий опыта применяют ЭВМ.
Основные достоинства хроматографического анализа:
В зависимости от природы
взаимодействия, обусловливающего распределение
компонентов между элюентом и неподвижной
фазой, различают следующие основные виды
хроматографии - адсорбционную, распределител
Адсорбционная хроматография основана на различии
сорбируемости разделяемых веществ адсорбентом
(твёрдое тело с развитой поверхностью); распределительн
В соответствии с агрегатным состоянием элюента различают:
Газовая хроматография применяется для газов разделения, определения примесей вредных веществ в воздухе, воде, почве, промышленных продуктах; определения состава продуктов основного органического и нефтехимического синтеза, выхлопных газов, лекарственных препаратов, а также в криминалистике и т.д.
Жидкостная хроматография используется для анализа, разделения и очистки синтетических полимеров, лекарственных препаратов, детергентов, белков, гормонов и др. биологически важных соединений. Использование высокочувствительных детекторов позволяет работать с очень малыми количествами веществ (10-11-10-9 г), что исключительно важно в биологических исследованиях.
В зависимости от агрегатного состояния неподвижной фазы газовая хроматография ГХ (GC) бывает газо-адсорбционной (неподвижная фаза - твёрдый адсорбент) и газожидкостной (неподвижная фаза - жидкость), а жидкостная хроматография - жидкостно-адсорбционной (или твёрдо-жидкостной) и жидкостно-жидкостной.
Различают колоночную и плоскос
Ряд видов хроматографии осуществляется с помощью приборов, называемых хроматографами, в большинстве из которых реализуется проявительный вариант хроматографии. Хроматографы используют для анализа и для препаративного (в т. ч. промышленного) разделения смесей веществ. При анализе разделённые в хроматографической колонке вещества вместе с элюентом попадают в установленное на выходе из колонки специальное устройство – детектор, регистрирующее их концентрации во времени.
Полученную в результате
этого выходную кривую называют хроматограммой. Для качественного хроматографическ
В соответствии с природой детектора и механизмом возникновения сигнала различают химические, физические, физико-химические, биологические и др. (см.табл.).
Подвижные, неподвижные фазы и детекторы различных хроматографических методов анализа
3. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА
Хроматография – процесс, основанный
на многократном повторении актов сорбции
и десорбции вещества при перемещении
его в потоке подвижной фазы вдоль неподвижного
сорбента. Разделение сложных смесей хроматографическим спос
Качественный хроматографически
Количественный хроматографичес
В количественной газовой хроматографии применяют методы абсолютной градуировки и внутренней нормализации, или нормировки. Используется также метод внутреннего стандарта. При абсолютной градуировке экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики или рассчитывают соответствующие коэффициенты. Далее определяют те же характеристики пиков в анализируемой смеси, и по градуировочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным при определении микропримесей.
При использовании метода внутренней нормализации принимают сумму каких-либо параметров пиков, например сумму высот всех пиков или сумму их площадей, за 100%. Тогда отношение высоты отдельного пика к сумме высот или отношение площади одного пика к сумме площадей при умножении на 100 будет характеризовать массовую долю (%) компонента в смеси. При таком подходе необходимо, чтобы зависимость величины измеряемого параметра от концентрации была одинаковой для всех компонентов смеси.
3.1 Виды хроматографических методо
Хроматография впервые была введена в аналитическую практику русским ботаником М.С. Цветом. В первых же работах с помощью этого метода М.С. Цвет установил, что считавшийся однородным зеленый пигмент растений хлорофилл на самом деле состоит из нескольких веществ. При пропускании экстракта зеленого листа через колонку, заполненную порошком мела, и промывании петролейным эфиром он получил несколько окрашенных зон, что несомненно говорило о наличии в экстракте нескольких веществ. Впоследствии это было подтверждено другими исследователями. Этот метод он назвал хроматографией, хотя сам же указал на возможность разделения и бесцветных веществ.
Вещество подвижной фазы непрерывно
вступает в контакт с новыми участками
адсорбента и частью адсорбируется, а
адсорбированное вещество контактирует
со свежими порциями подвижной фазы и
частично десорбируется.
Таким образом, создателю хроматографического
М.С. Цвет сформулировал закон, который назвал законом адсорбционного замещения:
Вещества, растворенные в определенной жидкости, образуют определенный адсорбционный ряд А, В, С,…, выражающий относительное адсорбционное сродство его членов к адсорбенту. Каждый из членов адсорбционного ряда, обладая большим адсорбционным сродством, чем последующий, вытесняет его из соединения и в свою очередь вытесняется предыдущим.
Таким образом, основным условием для
осуществления хроматографическ
В современной хроматографии для
разделения веществ кроме молекулярной адсорбции используют
и другие физико-химические явления. Имеется
несколько классификаций, основанных
на различных принципах. Общепринятыми
являются следующие.
По агрегатному состоянию применяемых фаз. Согласно этой классификации хроматографию подразделяют на газовую и жидкостную. Газовая включает газо-жидкостную и газо-адсорбционную хроматографию. Жидкостная хроматография подразделяется на жидкостно – жидкостную, жидкостно – адсорбционную и жидкостно – гелевую. Первое слово в этой классификации характеризует агрегатное состояние подвижной фазы.
По механизмам разделения, т.е. по характеру взаимодействия между сорбентом и сорбатом. По этой классификации хроматографию подразделяют на следующие виды:
1. адсорбционная хроматография – разделение основано на различии в адсорбируемости разделяемых веществ твердым адсорбентом;
2. распределительная хроматография – разделение основано на различии в растворимости разделяемых веществ в неподвижной фазе (газовая хроматография) и на различии в растворимости разделяемых веществ в подвижной и неподвижной жидких фазах;
3. ионообменная хроматография – разделение основано на различии в способности разделяемых веществ к ионному обмену;
4. проникающая хроматография – разделение основано на различии в размерах или формах молекул разделяемых веществ, например, при применении молекулярных сит (цеолитов);
5. осадочная хроматография – разделение основано на образовании различных по растворимости осадков разделяемых веществ с сорбентом;
6. адсорбционно-
Информация о работе Хроматографические методы анализа. Хроматография