Химиялық байланыс түрлері

Автор работы: Пользователь скрыл имя, 02 Февраля 2014 в 10:38, реферат

Краткое описание

Алмасу механизмі атомдардың жұптаспаған электрондарының бұлттары өзара бүркесіп ортақ жұп түзгенде байқалады. Мысалы, сутек молекуласында s — s орбитальдар бүркесіп, полюссіз коваленттік байланыс түзеді.
Хлорсутек молекуласында s-және р- орбитальдардағы жалқы электрондардың бұлттары бүркесіп, полюсті коваленттік байланыс түзеді, өйткені ортақ бұлт электртерістігі үлкендеу хлоратомына қарай ығысады.

Содержание

І. Кіріспе
ІІ. Негізгі бөлім.
1.Химиялық байланыс түрлері
2. Ионды байланыс
3. Ковалентті полюсті байланыс
4. Металдық байланыс
5. Сутектік байланыс
6. Валенттілік
ІІІ Қорытынды.
IV. Пайдаланылған әдебиеттер.

Прикрепленные файлы: 1 файл

referat himiyalik baylanis.docx

— 56.92 Кб (Скачать документ)

Қазақстан Республикасының Денсаулық Сақтау Министрлігі

Оңтүстік  Қазақстан Мемлекеттік Фармацевтикалық  Академиясы

Фармакогнозия және химия кафедрасы.

СӨЖ

Тақырыбы:

Химиялық  байланыс түрлері.          

                       

 

 

                       Орындаған:Мусаметова Д.

    Тобы:101 Б ФК

                        Қабылдаған:Кучербаев К.Ж.

 

 

                                

Шымкент 2013ж

 

 

                                              Жоспар:

І. Кіріспе

ІІ. Негізгі бөлім. 
1.Химиялық байланыс түрлері  
2. Ионды байланыс  
3. Ковалентті полюсті байланыс  
4. Металдық байланыс  
5. Сутектік байланыс

6. Валенттілік

ІІІ Қорытынды.

IV. Пайдаланылған әдебиеттер.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Химиялық байланыстың түрлері. Валенттілік байланыс теориясы. Иондық және сутектік байланыс. Орбиталардың гибриттенуі.

 

Атомдар өзара әрекеттескен кезде химиялық байланыс туып, соның нәтижесінде молекулалар, иондар, кристалдар, радикалдар түзіледі. Осыған сай химиялық байланыстың 4 типі бар, олар коваленттік, иондық, металдық, сутектік болып бөлінеді.

Коваленттік химиялық байланыс


Коваленттік химиялық байланыс атомдардың арасында ортақ электрон бұлты түзіліп, ортақ электрон жұбы пайда болғанда шығады. Әрекеттесуге қатысқан элемент атомдары тұрақты әрі тиімді 8 электронды конфигурацияға (s2p6) ие болады, тек сутек үшін 2 электрон(s2) жеткілікті.

Коваленттік байланыс екі түрлі механизммен түзіледі: бірі — алмасу, екіншісі — донорлы-акцепторлы.

Алмасу механизмі атомдардың жұптаспаған электрондарының бұлттары өзара бүркесіп ортақ жұп түзгенде байқалады. Мысалы, сутек молекуласында s — s орбитальдар бүркесіп, полюссіз коваленттік байланыс түзеді.

Хлорсутек молекуласында s-және р- орбитальдардағы жалқы электрондардың бұлттары бүркесіп, полюсті коваленттік байланыс түзеді, өйткені ортақ бұлт электртерістігі үлкендеу хлоратомына қарай ығысады.

Азот молекуласындағы үш ортақ жұп р-орбитальдардағы жалқы электронды бірдей бұлттардың бүркесуінен туатындықтан, полюссіз болып шығады

Үш байланыстың біреуі (ядроны жалғастыратын сызық бойынша бүркесуі) σ-, ал екеуі - (көлденең бұлттардың бүркесуі)р- байланыс болып саналады.

Мұндай еселі байланыстар  органикалық қосылыстарда жиі кездеседі.

Қаныққан көмірсутек метанда 4 σ-байланыс бар, ал канықпаған көмірсутек этиленде бес σ-, бір -байланыс, ацетиленде үш σ-, екі -байланыс болатыны көрініп тұр.

Донорлы-акцепторлы механизм бойынша коваленттік химиялық байланыс бір атомның дайын жұптасқан  электроны екінші атомның бос  орбиталіне орналасып, ортақ бұлттар  түзгенде түзіледі.

 

 

  

        Аммиак молекуласындағы азот атомы — донор, өзінің жұптасқан қос электронын хлорсутектің құрамынан бөлінген акцептордың, яғни сутек катионының (жалаң протонның) бос орбиталіне жіберіп, бұрыннан алмасу механизмімен пайда болған үш коваленттік байланысқа төртінші — донорлы-акцепторлы жолмен түзілген байланысты қосады. Мұндай жағдай органикалық қосылыстардың әрекеттесуінде де жиі кездеседі. Мысалы, аминдердің тұзға айналуын қарастырайық:

СН— NH+ Н+Сl→ [СН— NH3]+Сl-

Коваленттік байланысты заттар қатты күйде екі типті кристалдық тор түзеді: біреуі — атомдық  торлы кристалдар, өте берік болады (алмаз, графит, кварц SiO2). Екіншісі — молекулалық торлы кристалдар, қалыпты жағдайда газ күйінде, оңай ұшатын сұйықтықтар, оңай балқитын не бірден буланатын қатты заттар (Н2, мұз, І2, "құрғақ мұз" — СО2) түрінде кездеседі.

Металдық байланыс


Металдың кристалдық торының түйіндерінде атомдар немесе олардың иондары  орналасатыны белгілі. Металдық тордағы  бостау күйдегі делокальданған электрондар  көптеген ядролардың арасында өзара тарту күштерін тудырып, металдық байланыс түзеді. Металдардың сыртқы деңгейіндегі валенттік электрондар саны аз болатындықтан, олардың иондарға айналуы қиын емес: Me - ne→ Ме+n

Мұндай қабілетті металдар бос күйде де, химиялық әрекеттесу кезінде де көрсетеді. Бос күйдегі металдың белгілі физикалық қасиеттері: электр- және жылуөткізгіштігі, қаттылығы, иілімділігі, созылғыштығы, өзіне тән жылтыры, т.б. булардың барлығы металдық байланысқа тәуелді.

Металдардың валенттік электрондары өз ядросымен нашар байланысқан. Сондықтан, бір-бірінен оңай ажырайды және металда теріс иондар қатары қалыптасады. Бұл иондар кристалдық торда орналасқан және электрондардың көбісі бүкіл кристалл бойынша жылжи алады. Металдың электрондары бүкіл металдағы атомдарды байланыстырады. [1]

Металдағы электрондар(валенттік электрондар) газ бен кристалдық торлардағызарядталған иондардың арқаумен бір-бірімен әрекеттесуіне себепші болған - химиялық байланыс. Металдық байланыстың идеалды моделі металдың валенттік электрондармен жарым-жартылай топтастырылған энергетикалық аймағының (өткізу қабілеті бар зонасы) пайда болуына сәйкес келеді. Металдарды құрастыратын атомдардың жақындасуымен валенттік электрондардың атомдық орбиталдары, түйіндес қоспаның делокализдалған p-орбиталдар сияқты, кристалдық торлар бойынша делокализдалған p-орбиталдарға айналады.

Металдық байланыстыңсандық сипаттамасы  квант механикасымен ғана бола алады. Сапалық сипаттаманы коваленттік  байланыстың ұғымымен түсінуге болады.

Металдың екі атомы жақындасқанда, мысалы Li, коваленттік байланыс пайда  болады, сонымен валенттік электрондың  әр энергетивтік деңгейі екіге бөлінеді. Li атомдардың N саны кристалдық торларды жасаған кезде, көрші атомдардың электрон бұлттарының қайта жабуы валенттік электрондың әр энергетикалық деңгейі N деңгейлерге бөлінеді. Деңгейлердің саны көп болғандықтан, олар бір-біріне жақын орналасқан. Сол үшін оларды энергетикалық деңгейлердің бөлінбейтін, әрі ақырғы ені бар, бір зонасы деп есептеуге болады. Валенттік электронлардың саны бірдей болған екі атомдық молекуламен салыстырғанда, әр атом көп байланыстардың пайда болуына үлес қосып жатады. Сондықтан, жүйенің энергиясының минимумы (немесе байланыстың максимумы) молекуладағы екі центрлік байланысына қарағанда, үлкен қашықтыққа жете алады.

Металдардағы атомдар арасындағы қашықтық, коваленттік байланыспен  құрылған қосылыстарға қарағанда (металлдық  атомдардың радиусы әрқашан коваленттік радиусынан үлкен) едәуір үлкен. Ал үйлестіретін саны (ең жақын көршілердің саны) металдың кристалдық торыларында көбінесе 8 немесе 8-ден үлкен. Ең көп кездесетін кристалдық құрылымдардың үйлестіретін саны 8 (көлеміцентрир. текше), 12 (шекцетрир. текше немесе гексаген. тығыздап оралған). Коваленттік радиустарды пайдаланып металл торларының параметрлерінің есептеуі төмен нәтижелерді көрсетеді. Осылайша, Li2 молекуланың (коваленттік байланыс) Li атомдардың арасындағы қашықтығы 0,267 нм, ал Li металлдың ішінде 0,304 нм тен. Металлдағы әр Li атомдың ең жақын көршілерінің саны 8 болса, есе көп қашықтықта тағы 6 бар. Байланыстың энергиясы Li бір атомға санасақ, ең жақын көршілердің саны өскеннен Li2 үшін 0,96.10-19Дж-нен, кристаллдық Liүшін 2,9.10-19 Дж-ге өседі.

Сутектік байланыс


Сутектік байланыс оң зарядты полюстікке ие болған сутек атомы мен теріс полюсті, электртерістігі күшті, бөлінбеген электрон жұбы бар (көбіне F, О, N, кейде CI, S) атомдар арасында түзіледі. Сондықтан сутектік байланыстың механизмін жартылай электростатикалық, жартылай донорлы-акцепторлы деп қарастыруға болады.

Сутектік байланысқа белоктардағы карбонил тобы мен амин тобындағы сутектің арасында түзілген байланыс мысал бола алады.

Бұл полинуклеотидтер молекуласында іске асатын молекула ішіндік сутектік байланысқа жатады. Ал химияда көбіне молекула- аралық сутектік байланыстар кездеседі. Оны этил спиртінің өзінен немесе оны суға араластырғанда жылу бөле жүретін процестен байқауға болады.

Кіші молекулалы су, спирт, альдегид тәрізді заттардың қалыпты жағдайда сұйық күйде болуы еутектік байланыстың әсерінен. Сонымен қатар аммиак, фторсутек сияқты газ күйіндегі заттардың оңай сұйылуы олардың молекуласының арасында түзілетін сутектік байланыстар арқылы іске асырылады.

Сутектік байланыспен байланысқан заттар молекулалық кристалдық торға ие болады.

Иондық байланыс


Иондық байланыс катиондар мен аниондардың арасында электро-статикалық тартылу күшінің нәтижесінде пайда болады. Химиялық әрекеттескен атомдар 8 электронды тұрақты октетқабатқа ие болып, катион мен анионға айналу үшін олар күшті металдар мен бейметалдарға жатуы тиіс.

Иондық байланысқан қатты заттар иондық кристалдық торға ие болады. Сондықтан олар қатты, берік, қиын балқитын заттарға жатады. Иондық байланыс көбіне нағыз типтік металдардың оксидтері мен гидроксидтеріне және барлық тұздарға тән.

Әдетте, бір молекуланың ішінде байланыстың әр түрлі типтері кездеседі. Мысалы, күшті негіздерде (КОН, Са(ОН)2, т.б. ) металл катионы мен гидроксотоп арасында иондық, ал оттек пен сутек арасында коваленттік полюсті байланыс түзіледі. Оттекті қышқылдардың тұздарында да (K24, СаСО3, т.б.) металл катионы қышқыл қалдығының анионымен иондық байланыспен байланысса, оттек пен бейметалл (С, S) арасында коваленттік полюсті байланыс түзіледі.

Жалпы алғанда, химиялық байланысты типтерге жіктеу шартты сипатқа ие. Өйткені  олардың түпкі негізі бір. Мысалы, иондық байланысты коваленттік байланыстың  шекті түрі деп қарау керек. Металдық байланыста коваленттік полюсті байланыстың да, иондық байланыстың да элементтері бар. Көптеген заттарда "таза" бір ғана химиялық байланыс типі бола бермейді. Мысалы, ас тұзы — натрий хлориді иондық байланысты қосылыстарға жатады. Іс жүзінде оның 84% байланысы иондыққа, қалған 16%-і коваленттіге тиесілі. Сондықтан химиялық байланыстың полюстік дәрежесін біліп тұрып, нақты қай типке жататынын сөз еткен дұрыс.

Егер галогенсутектер қатарындағы  байланыстың полюстік дәрежесінің  өзгеруіне келсек, фторсутектен астатсутекке қарай: HF→HCl→HBr→HI→HAt төмендейді. Себебі галоген мен сутектің электртерістіктерінің айырмашылығы азая түседі де, ақыры астатсутекке жеткенде байланыс полюссіз коваленттіге жуықтайды.

 

Химиялық байланыстың барлық типтері мен түрлерінің негізі бір болатыны — олардың бәрінің де табиғаты электрондық бұлттардың тығыздығының өзгеруіне тәуелді. Химиялық байланыстың түзілуі кез келген жағдайда электрондық-ядролық әрекеттесудің арқасында, осы кездегі энергия ұтысының (бөлінуінің) нәтижесінде іске асады. Оны барлық химиялықбайланыс типтерінің белгілерін өзара салыстырғанда байқаймыз.[3]


Валенттілік- (лат. valentіa — күш) — атомның басқа атомдарды немесе атомдар тобын қосып алып химиялық байланыс құру қасиеті. Валенттіліктің мәні берілген элементтіңатомы ала алатын немесе орнын баса алатын сутек атомдарының санымен өлшенеді. Химияға валенттілік ұғымын 1853 ж. ағылшын химигі Э.Франкленд (1825 — 1899) енгізген. А.М. Бутлеровтың қосылыстардың химиялық құрылысы теориясына (1861) Валенттілік негіз болды, Д.И. Менделеевтің химиялық элементтердің периодтық жүйесін ашуына (1869) байланысты бұл ұғым одан әрі дамыды. Менделеев элементтің валенттілікінің оның периодтық жүйедегі орнымен байланыстылығын тапты, айнымалы валенттілік туралы ұғымды енгізді, элементтің сутекпен және оттекпен қосылыстарындағы валенттіліктерінің өзара байланысын көрсетті.

Валенттіліктің электрондық  теориясы (Коссоль теориясы, 1916) бойынша атомдардың өзара әрекеттесуі бір атомнан (немесе бірнеше атомдар тобынан) екінші атомға электрон ауысуымен байланысты деп қарастырылды; осыдан келіп оң және теріс валенттілік ұғымы шықты: элементтің оң валенттілік оның инертті (сарғылт) газдардың электрондық құрылысына ие болу үшін өзінен беретін, ал теріс валенттілік өзіне қабылдайтын электрондардың санына тең. Алайда, атомдардың бір-бірімен әрекеттесуі кейде электрон ауысуынсыз да іске асады. Элементтердің валенттілікіне қарап химиялық формулаларды жазуға болады.

Валенттілік теориясының  дамуындағы жаңа кезең атомның кванттық-механикалық теориясының жасалуымен байланысты. Валенттіліктің кванттық-механикалық теориясы бойынша элементтердің химиялық қасиеті және олардың валенттілік атомның сыртқы электрон қабатының құрылысына байланысты. Атомдар өзара әрекеттесіп химиялық байланыс түзулеріне тек сыртқы электрондық қабаттағы электрондар қатысады. Атомның негізгі (қозбаған) күйіндегі валенттілік оның сыртқы электрондық қабатындағы жалқы (жұпсыз) электрондар санына тең (яғни спиндері қанықпаған электрондар). Мысалы, инертті газдардың электрондарының бәрі жұпталған (жалқы электрондары жоқ), сондықтан олар нөл валентті, ал периодтық жүйенің І-тобындағы элементтер атомдарының сыртқы электрондық қабатында бір жалқы электрон болады, сондықтан олар бір валентті; ІІ-топ элементтері атомдарының сыртқы қабатында екі жалқы электрон бар, олар екі валентті, т.б.[1]

Бинарлы қосылыстардың формулаларын құру алгоритмі

Заттың формуласындағы атомдар сандарын білу үшін оны өрнектеуге арналған жаңа түсінікпен танысайық, ол валенттілік деп аталады. Валенттілік дегеніміз бір элемент атомының басқа бір элемент атомының белгілі бір санын қосып алуы. Валенттілік түсінігін ғылымға Э. Франкленденгізген. 
Валенттіліктің бірлігі ретінде сутектің валенттілігі алынған, сутек қосылыстарында әркашан бір валентті деп есептеледі. Өзімізге белгілі судың формуласы Н20 (аш екі о), ол молекуланыңсутектің 2 атомы мен оттектің бір атомынан тұратынын көрсетеді. Судың кұрамында оттектің бір атомына сутектің екі атомы сөйкес келеді екен. Оны былай көрсетсек Н-О-Н оттектің валенттілігі екіге тең екенін байқаймыз. Өйткені сутек бір жағымен байланысса, оттек екі жағымен де байланысады. 

Молекула кұрамы екі  әлемент атомынан тұратын қосылыстар бинарлы қосылыстар деп аталады. 

Енді MgO молекуласында оттек екі валентті болса, магний атомы да екі валентті болады, ал натрийдің оттекпен қосылысы Na20 су молекуласына ұксас келеді Н-О-Н, Na-0-Na, яғни натрий да бір валентті болғаны. 
Валенттілік рим цифрларымен белгіленеді, формулаларда элмент таңбасының үстіне жазылады, мәні I-VIII-гe дейін өзгереді. Валенттілік бойынша формула құру үшін элементтердің валенттіліктерінің ең кіші ортак еселігін тауып, әр элементтін валенттілігіне бөліп, индекс етіп жазамыз. Егер элемент қосылыстарында айнымалы валенттілік көрсетсе, онын, атауында элементтің валенттілігі рим цифрымен жақшаның ішінде көрсетіледі.

Информация о работе Химиялық байланыс түрлері