Гормоны поджелудочной железы

Автор работы: Пользователь скрыл имя, 17 Ноября 2013 в 13:11, доклад

Краткое описание

Инсулин - вырабатывается β-клетками, это белок (51 АК). Секрецию инсулина усиливает глюкоза и Са++, аргинин и лейцин. Контролирует секрецию инсулина соматотропин и соматостатин. Мишенью для инсулина служат: мышечная, соединительная, жировая ткань, в меньшей степени – печень. Эффект гормона реализуется по межмембранному типу — комплекс инсулин-рецептор повышает проницаемость клеточных мембран для глюкозы, АК, СА++, К+, Na++. Особенно сильно ускоряется транспорт глюкозы. Повышается проникновение Са++ в клетку, инсулин способствует образованию цГМФ из ГМФ за счет повышения активности гуанилатциклазы. Одновременно СА++ активирует фосфодиэстеразу, расщепляющую цГМФ. Снижение концентрации цГМФ сопровождается торможением распада гликогена, снижением глюконеогенеза и липолиза, снижает синтез кетоновых тел. При этом облегчается синтез гликогена и липогенез (синтез ТАГ), а также синтез белков, что ведет к ускорению роста и дифференциации клеток.

Прикрепленные файлы: 1 файл

Gormony_podzhel.docx

— 18.38 Кб (Скачать документ)

ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ.

Инсулин - вырабатывается β-клетками, это белок (51 АК). Секрецию инсулина усиливает глюкоза и Са++, аргинин и лейцин. Контролирует секрецию инсулина соматотропин и соматостатин. Мишенью для инсулина служат: мышечная, соединительная, жировая ткань, в меньшей степени – печень. Эффект гормона реализуется по межмембранному типу — комплекс инсулин-рецептор повышает проницаемость клеточных мембран для глюкозы, АК, СА++, К+, Na++. Особенно сильно ускоряется транспорт глюкозы. Повышается проникновение Са++ в клетку, инсулин способствует образованию цГМФ из ГМФ за счет повышения активности гуанилатциклазы. Одновременно СА++ активирует фосфодиэстеразу, расщепляющую цГМФ. Снижение концентрации цГМФ сопровождается торможением распада гликогена, снижением глюконеогенеза и липолиза, снижает синтез кетоновых тел. При этом облегчается синтез гликогена и липогенез (синтез ТАГ), а также синтез белков, что ведет к ускорению роста и дифференциации клеток.

Т.о., в тканях инсулин активирует: транспорт в клетку глюкозы, АК, К+ и СА++; активирует синтез гликогена, ТАГ и белков. В тканях инсулин тормозит: распад гликогена, глюконеогенез, липолиз,  синтез кетоновых тел и холестерина.

Т.е. инсулин активирует процессы, ведущие к снижению содержания глюкозы и тормозит процессы, повышающие содержание глюкозы. Нарушение (снижение) синтеза инсулина может привести к сахарному диабету.

2. Глюкагон - вырабатывается α-клетками поджелудочной железы. Его секреция ускоряется  при увеличении Са++ и аргинина в крови. Ингибирует его секрецию глюкоза. Продукцию и секрецию глюкагона контролирует соматостатин. Мишень глюкагона—печень, жировая ткань и, в меньшей степени, мышцы. Эффект реализуется через АЦС, проявляется повышением распада гликогена в печени и отчасти в скелетных мышцах. Глюкагон повышает распад  белка в печени и липолиз в жировой Тани в то же время угнетается синтез белка. Глюкагон способствует поддержанию высокого уровня глюкозы в крови.

3. Соматостатин  вырабатывается Д-клетками. Сомитастатин тормозит секрецию глюкогона со всеми вытекающими последствиями (т.е. увеличивает глюконеогенез и распад гликогена).

4. Панкреатический полипептид вырабатывается F-клетками(36 АК). Проявляет глюкагоноподобную активность, снижает активность  желудочных и панкреатических ферментов, расслабляет желчный пузырь, увеличивает перистальтику кишечника.

1. Действие гормонов поджелудочной  железы

 Уже в первые годы применения инсулина была подмечена его способность снижать диурез при проведении пробы Фольгарда у больных. Это действие, напоминающее действие АДГ, отмечалось и позже. В эксперименте при внутривенном введении собакам инсулин (0,5—4 ЕД) оказывает двухфазное действие: в первом периоде наблюдается задержка выделения натрия, воды, фосфатов, а также глюкозы при нагрузке ею или при флоридзиновой глюкозурии за счет усиления реабсорбции этих веществ (Оганесян А. С., Демирчян А. А., 1963; Оганесян А. С., 1964). Резко снижается диуретическое и натрийуретическое действие строфантина, что А. С. Оганесян объясняет тем, что инсулин повышает активность мембранной АТФазы, участвующей в транспорте натрия, тогда как строфантин является ингибитором этого фермента. Строфантин угнетает реабсорбцию не только натрия, но и глюкозы, а инсулин снимает и этот эффект. Поскольку действие инсулина блокируется тиоловыми ядами, было сделано предположение, что рецептором инсулина на мембране является белок, содержащий тиоловые группы. У здоровых собак после первой фазы уменьшения диуреза и натрийуреза наступает противоположное действие с усилением фильтрации. Время выделения фенолового красного, сниженное после удаления поджелудочной железы, ускорялось после введения инсулина (Оганесян А. С., 1968). Автор связывает это с активирующим влиянием гормона на обмен веществ в канальцах. Прямое стимулирующее действие инсулина на активный транспорт натрия признаётся и зарубежными авторами. При капельном введении инсулина у людей наблюдается снижение экскреции натрия при неизменной клубочковой фильтрации и кровотоке. Авторы объясняют этот эффект усилением реабеорбции натрия в дистальном отделе, так как клиренс свободной воды возрастает.

 

 В противоположность  только что изложенным данным, признающим за инсулином прямое  действие на почки, высказывалось  мнение о его косвенном влиянии,  которое реализуется через стимуляцию  секреции АДГ. Так, например, антидиуретическое  действие инсулина у людей  снималось внутривенным введением  этилового спирта, который по  общепринятому мнению тормозит  секрецию АДГ, а у больного  с несахарным диабетом инсулин  вообще не вызвал антидиуреза. Согласно наблюдениям Ф. С. Беликовой (1967), при аллоксановом диабете у собак резко снижается диурез после водной нагрузки, а введение инсулина восстанавливает его. Автор допускает, что инсулин снижает повышенный при экспериментальном диабете уровень АДГ в крови, в пользу чего говорит уменьшение транспорта "осмотически свободной" воды (Беликова Ф. С., 1971). Антидиуретическое действие инсулина при его введении в почечную артерию собак зависит от повышения транспорта натрия и отличается по механизму от действия АДГ. Более того, влияние АДГ на диурез после водной нагрузки снижается на фоне действия инсулина (Пронина Н. Н. и др., 1976).

 

 Наряду с наблюдениями  об уменьшении диуреза и выделения  натрия имеются данные об усилении  диуреза у крыс, кроликов и  собак в первые часы после внутривенного введения инсулина. Наконец, представляют интерес результаты, полученные при введении инсулина собакам в большую цистерну мозга. В этом случае гипогликемический эффект был выражен сильнее; и наблюдалось снижение экскреции натрия и калия (Беликова Ф. С., Петросян А. Г., 1971). Диурез на фоне высокого уровня спонтанного мочеотделения (1 мл и более в минуту) снижался, а при низком уровне (0,2 мл в минуту) или же в опытах с водной нагрузкой не изменялся. Заметим, что в упомянутой работе при внутривенном введении инсулин на фоне высокого уровня диуреза тормозил его и снижал выделение натрия, а на фоне низкого уровня не оказывал влияния на эти показатели. Предварительное интерцисцернальное введение бета-блокатора анаприлина снимало антидиуретическое действие инсулина (Беликова Ф. С., 1974), что трактуется автором как показатель того, что инсулин через ликворную систему стимулирует секрецию АДГ при участии адренергических структур.

 

 При введении инсулина  в почечную артерию наблюдается  одностороннее снижение диуреза,  а также экскреция натрия и  калия при неизменной фильтрации (Никитин А. И., 1971). Одновременно  повышается максимальная секреция  кардиотраста. Сходный эффект наблюдался и при внутривенном введении инсулина. Стимуляция секреторного транспорта подтверждена также на срезах коркового вещества почек кроликов. Накопление срезами кардиотраста достоверно повысилось как при предварительном введении инсулина кроликам, так и при добавлении его в инкубационную среду. Все это говорит за прямое влияние инсулина на транспортные процессы в почках.

 

 Помимо инсулина, некоторым  влиянием на функцию почек  обладает и второй гормон поджелудочной  железы - глюкагон, который продуцируется  а-клетками и представляет собой полипептид, состоящий из 29 аминокислот. Глюкагон повышает уровень сахара в крови, в том числе за счет усиления гликогенолиза. Последнее связывают с активацией фосфорилазы за счет стимулирующего влияния на аденилатциклазу и усиленного образования цАМФ. Это сближает механизм действия глюкагона и адреналина. Глюкагон не только оказывает выраженное влияние на печень, но обладает, как выяснилось в последние годы, и кардиотоническим действием.

 

 В первые годы, после того как был синтезирован глюкагон появились сообщения о его диуретическом и салурическом действии после введения людям. В противоположность инсулину глюкагон усиливал мочеотделение, выделение фосфата и бикарбоната без изменений фильтрации; усиливалась также экскреция натрия, калия, хлора. Повышенное выделение электролитов не связано с гипергликемией, так как если ее вызывали вливанием глюкозы, транспорт ионов не изменялся. Авторы предположили, что глюкагон действует непосредственно на канальцы. Согласно наблюдениям, подкожное введение людям 2 мг глюкагона сопровождается увеличением кровотока и фильтрации, а также диуреза, натрийуреза и в меньшей мере выделения калия, что было объяснено изменениями гемодинамики почек.

 

 В экспериментальных  исследованиях было подтверждено, что глюкагон усиливает диурез  и особенно выделение натрия, калия и хлора у крыс при  неизменной экскреции креатинина. При комбинации с ним кортизон активнее повышает диурез после водной нагрузки у гипофизэктомированных крыс. Что касается механизма действия, то при введении глюкагона в почечную артерию наблюдалось двустороннее повышение фильтрации, но различное в обеих почках выделение ионов, что указывало на прямое тормозящее действие в отношении реабсорбции воды, натрия, хлора, кальция и магния. В опытах с перфузией почки собаки кровью донора, получавшего глюкагон, также были получены данные в пользу прямого влияния на почку.

 

 Кажется, вполне логичным  предположить, что молекулярный  механизм изложенного действия  глюкагона связан в основном  с его стимулирующим влиянием  на активность аденилатциклазы не только в печени и сердце, но и в почках. Ранее уже отмечалось значение цАМФ в канальцевом транспорте натрия. Это не исключает участия гемодинамических изменений и, в частности, усиления фильтрации при резорбтивном влиянии глюкагона, на что указывают некоторые авторы.


Информация о работе Гормоны поджелудочной железы