Автор работы: Пользователь скрыл имя, 17 Мая 2013 в 23:41, курсовая работа
Процессы и аппараты, общие для различных отраслей химической технологии, получили название основных процессов и аппаратов. Например, одним из основных процессов является перегонка (ректификация) — процесс разделения жидких смесей, основанный на различии давления паров компонентов смеси. Этот процесс применяется для разделения жидкого воздуха в производстве кислорода, разделения воды и азотной кислоты в производстве азотной кислоты, разделения сложной смеси органических продуктов для получения дивинила в производстве синтетического каучука и во многих других химических производствах.
Введение 2
Виды теплообменных процессов 2-3
Физико-химические основы процесса конденсации метилового 3-21
спирта и воды. Виды конденсации. Прохождение процесса
метилового спирта и воды
Характеристика сырья и готовой продукции. 21-29
Описание технологической схемы конденсации.
Технологический и конструктивный расчет
Гидравлическое сопротивление
Механический расчет
Компоновочный расчет
Конструктивный расчет
Промышленная безопасность установки конденсации
Заключение
Список использованной литературы
незначит. содержание в нем газа приводит к резкому снижению интенсивности конденсация По мере увеличения скорости (числа Рейнольдса Reсм) парогазовой смеси влияние газа на интенсивность процесса постепенно ослабляется.
При конденсации паров из многокомпонентных смесей (паровых или парогазовых) в газовой фазе также происходят взаимосвязанные тепло- и массоперенос. При этом эффективный коэф. теплопроводности смеси и эффективные коэф. диффузии ее отдельных компонентов определяются природой и концентрациями др. компонентов. В случае гомог. смеси конденсатов на поверхности твердого тела происходит только пленочная конденсация, в случае гетерогенной - смешанная. Напр., при конденсация бинарной смеси водяного пара и орг. вещества на твердой поверхности образуется жидкая пленка этого вещества, покрывающаяся каплями влаги.
Десублимация. В данном процессе конденсированная (твердая) фаза не может стекать с поверхности твердого тела и толщина ее слоя непрерывно возрастает. Поэтому процесс нестационарный и скорость его постепенно снижается. При проведении конденсация в глубоком вакууме (средняя длина своб. пробега молекул соизмерима с характерным размером аппарата), например, при разделении паровых или очистке парогазовых смесей необходимо учитывать изменения механизма и закономерностей тепло- и массопереноса. Это приводит к изменению условий конденсация чистых паров и паров, содержащих примеси неконденсирующихся газов.
ВИДЫ КОНДЕНСАЦИИ
Соотношения для разных видов конденсации выведены на основе опытных данных, а также статистической физики и термодинамики.
КОНДЕНСАЦИЯ НАСЫЩЕНЫХ ПАРОВ
При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона — Клаузиуса определяет параметры этого равновесия — в частности, выделение тепла при конденсации и охлаждение при испарении.
Конденсация перенасыщенного пара
Наличие перенасыщенного пара возможно в следующих случаях:
Прибор ядерной физики — камера Вильсона — основана на явлении конденсации на ионах.
При отсутствии ядер конденсации пересыщение может достигать 800—1000 и более процентов. В этом случае конденсация начинается во флуктуациях плотности пара (точках случайного уплотнения вещества).
Конденсация ненасыщенного пара
Конденсация ненасыщенного пара возможна в присутствии порошкообразных или твёрдых пористых тел. Кривая (в данном случае вогнутая) поверхность изменяет равновесное давление и инициирует капиллярную конденсацию.
КОНДЕНСАЦИЯ ТРЁРДОЙ ФАЗЫ
Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.
ТЕПЛООБМЕННЫЕ АППАРАТЫ
Теплообменники – аппараты, предназначенные для передачи тепла от одних веществ к другим.
Теплоносители – вещества, участвующие в процессе передачи тепла.
Нагревающие агенты – теплоносители, имеющие более высокую температуру, чем нагреваемая среда, и отдающие тепло.
Охлаждающие агенты – теплоносители, имеющие более низкую температуру, чем среда, от которой они воспринимают тепло.
По способу охлаждения различают конденсаторы:
стороны водой или воздухом. Получаемый конденсат и охлаждающий агент отводятся из конденсатора раздельно, и конденсат, если он представляет ценность, может быть использован. Поверхностные конденсаторы зачастую применяют в тех случаях, когда снижение и охлаждение конечного продукта, получаемого, например в виде перегретого пара, являются завершающей операцией производственного процесса.
Поверхностные конденсаторы более металлоемки, чем конденсаторы смешения, а следовательно, более дороги и требуют больших расходов охлаждающего агента. Это объясняется тем, что стенка, разделяющая участвующие в теплообмене среды, оказывает добавочное термическое сопротивление. Это вызывает необходимость повышения средней разности температур.
В качестве
поверхностных конденсаторов
В зависимости от способа передачи тепла различают две основные группы теплообменников.
В химической
технологии теплообменники применяются
изготовленные из различных металлов,
а так же и неметаллов. Выбор
их диктуется в основном его коррозионной
стойкостью и теплопроводностью, причем
конструкция существенно
Конструкция теплообменников должна отличаться простотой, удобством монтажа и ремонта. Конструкция теплообменника должна обеспечить возможно меньше загрязнение поверхности теплообмена и быть легко доступной для осмотра и чистки.
ТРУБЧАТЫЕ ТЕПЛЛОБМЕННЫЕ АППАРТЫ
Кожухотрубчатые теплообменники. Эти теплообменники относятся к числу наиболее часто применяемых поверхностных теплообменников. Кожухотрубчатый теплообменник жесткой конструкции, который состоит из корпуса, или кожуха 1, и приваренных к нему трубных решеток 2. В трубных решетках закреплен пучок труб 3.
К трубным решеткам крепятся (на прокладках и болтах) крышки 4.
В кожухотрубчатом теплообменнике одна из обменивающихся теплом сред движется внутри труб (в трубном пространстве), а другая II — в межтрубном пространстве.
Среды обычно направляют противотоком друг к другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, — в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении
Кроме того, при указанных направлениях движения сред достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата. В противном случае, например при подаче более холодной (нагреваемой) среды свержу теплообменника, более нагретая часть жидкости, как более легкая, может скапливаться в верхней части аппарата, образуя «застойные» зоны.
Трубы в решетках обычно равномерно размещают по периметрам правильных шестиугольников, т. е. по вершинам равносторонних треугольников , реже применяют размещение труб по концентрическим окружностям.
В отдельных случаях, когда необходимо обеспечить удобную очистку наружной поверхности труб, их размещают по периметрам прямоугольников. Все указанные способы размещения труб преследуют одну цель — обеспечить, возможно, более
компактное размещение необходимой поверхности теплообмена внутри аппарата. В большинстве случаев наибольшая компактность достигается при размещении трубок по периметрам правильных шестиугольников.
Трубы закрепляют в решетках чаще всего развальцовкой, причем особенно прочное соединение (необходимое в случае работы аппарата при повышенных давлениях) достигается при устройстве в трубных решетках отверстий с кольцевыми канавками, которые заполняются металлом трубы в процессе ее развальцовки. Кроме того, используют закрепление труб сваркой, если материал трубы не поддается вытяжке и допустимо жесткое соединение труб с трубной решеткой, а также пайкой применяемой для соединения главным образом медных и латунных труб. Изредка используют соединение труб с решеткой посредством сальников допускающих свободное продольное перемещение труб и возможность их быстрой замены. Такое соединение позволяет значительно уменьшить температурную деформацию труб, но является сложным, дорогим и недостаточно надежным.
Теплообменник- одноподовый. При сравнительно небольших расходах жидкости скорость ее движение в трубах таких теплообменников низка, и следовательно, коэффициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и высоты неудобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообмене (кожух аппарата). Поэтому более рационально увеличивать скорость теплообмена путем применения многоходовых теплообменников.
В многоходовом теплообменнике корпус , трубные решетки , укрепленные в них трубы и крышки идентичны.С помощью поперечных перегородок 5, установленных в крышках теплообменника, трубы разделены на секции, или ходы, по которым последовательно движется жидкость, протекающая в трубном пространстве теплообменника. Обычно разбивку на ходы производят таким образом, чтобы во всех секциях находилось примерно одинаковое число труб.Вследствие меньшей площади суммарного поперечного сечения труб, размещенных в одной секции, по сравнению с поперечным сечением всего пучка труб, скорость жидкости в трубном пространстве многоходового теплообменника возрастает (по отношению к скорости в одноходовом теплообменнике) в число раз, равное числу ходов.
Так, в четырехходовом теплообменнике скорость в трубах при прочих равных условиях в четыре раза больше, чем в одноходовом. Для увеличения скорости и удлинения пути движения среды в межтрубном пространстве служат сегментные перегородки . В горизонтальных теплообменниках эти перегородки являются одновременно промежуточными опорами для пучка труб.
Повышение интенсивности теплообмена в многоходовых теплообменниках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Это диктует выбор экономически целесообразной скорости, определяемой числом ходов теплообменника, которое обычно не превышает 5—6. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по сравнению с чисто противоточным движением участвующих в теплообмене сред.
В одноходовых и особенно в многоходовых теплообменниках теплообмен может ухудшаться вследствие выделения растворенных в жидкости (или паре) воздуха и других неконденсирующихся газов. Для их периодического удаления в верхней части кожуха теплообменников устанавливают продувочные краники.
Одноходовые и многоходовые теплообменники могут быть вертикальными или горизонтальными. Вертикальные теплообменники более просты в эксплуатации и занимают меньшую производственную площадь. Горизонтальные теплообменники изготавливаются обычно многоходовыми и работают при больших скоростях участвующих в теплообмене сред для того, чтобы свести к минимуму расслоение жидкостей вследствие разности их температур и плотностей, а также устранить образование застойных зон.
Если средняя
разность температур труб и кожуха
в теплообменниках жесткой
Это вызывает значительные напряжения в трубных решетках, может нарушить плотность соединения труб с решетками, привести к разрушению сварных швов, недопустимому смешению обменивающихся теплом сред. Поэтому при разностях температур труб и кожуха, больших 50 °С, или при значительной длине труб применяют кожухотрубчатые теплообменники нежесткой конструкции, допускающей некоторое перемещение труб относительно кожуха аппарата.
Для уменьшения температурных деформаций, обусловленных большой разностью температур труб и кожуха, значительной длиной труб, а также различием материала труб и кожуха, используют кожухотрубчатые теплообменники с линзовым компенсатором, у которых на корпусе имеется линзовый компенсатор, подвергающийся упругой деформации.. Такая конструкция отличается простотой, но применима при небольших избыточных давлениях в межтрубном пространстве, обычно не превышающих 6* 105 н/м2 (6 am).