Доход и прибыль. Виды и функции прибыли

Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 10:23, контрольная работа

Краткое описание

Стали – железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.
Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап).
Содержание углерода и примесей в стали значительно ниже, чем в чугуне. Поэтому сущность любого металлургического передела чугуна в сталь – снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.

Содержание

1 Понятие о стали. Сущность процесса передела чугуна в сталь 2
2 Диаграмма состояния железо-цементит. Практическое значение диаграммы 5
3 Испытание материалов на растяжение. Определение предела текучести 10
4 Технология термической обработки. Обработка стали холодом 14
5 Антифрикционные материалы. Их состав, применение и маркировка 16
6 Пластические массы. Основные свойства пластмасс 22
7 Начертите диаграмму состояния сплавов железа с углеродом. Покажите на ней структуры по всем ее зонам, а также характерные линии и точки (ликвидус, солидус, точки эвтектики, критические точки Ас3, Ас1, Асм. Справа от диаграммы постройте кривую медленного охлаждения сплава от 1600 до 6000 С с заданным содержанием углерода. Опишите превращения, происходящие в заданном сплаве. Дайте определения всем образующимся по ходу охлаждения структурам. 23
8 Часть 1. Укажите назначение, определите температуры нагрева, время нагрева, скорость охлаждения и охлаждающие среды для отжига, нормализации, закалки и отпуска детали из углеродистой стали, заданной в варианте задания. 25
9 Назовите материал, расшифруйте марку и укажите назначение материалов, указанных в таблице 30
10 Подберите марку сплава (материал) для изготовления изделий 32
Список литературы 33

Прикрепленные файлы: 1 файл

Контрольная для БГПК вар. 4.docx

— 1.23 Мб (Скачать документ)

 

Процессы при  структурообразовании железоуглеродистых сплавов 

 

Линия АВСD – ликвидус системы. На участке АВ начинается кристаллизация феррита ( ), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного.

Линия AHJECF – линия солидус. На участке АН заканчивается кристаллизация феррита ( ). На линии HJB при постоянной температуре 14990С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита ( ), в результате чего образуется аустенит:

На участке  JЕ заканчивается кристаллизация аустенита. На участке ECF при постоянной температуре 1147o С идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3 % углерода превращается в эвтектическую смесь аустенита и цементита первичного:

Эвтектика системы железо – цементит называется ледебуритом (Л), по имени немецкого  ученого Ледебура, содержит 4,3 % углерода.

При температуре  ниже 727o С в состав ледебурита входят цементит первичный и перлит, его называют ледебурит превращенный (ЛП).

По линии HN начинается превращение феррита ( ) в аустенит, обусловленное полиморфным превращением железа. По линии NJ превращение феррита ( ) в аустенит заканчивается.

По линии GS превращение аустенита в феррит, обусловленное полиморфным превращением железа. По линии PG превращение аустенита  в феррит заканчивается.

По линии ES начинается выделение цементита  вторичного из аустенита, обусловленное  снижением растворимости углерода в аустените при понижении  температуры.

По линии  МО при постоянной температуре 768o С имеют место магнитные превращения.

По линии PSK при постоянной температуре 727o С идет эвтектоидное превращение, заключающееся в том, что аустенит, содержащий 0,8 % углерода, превращается в эвтектоидную смесь феррита и цементита вторичного:

По механизму  данное превращение похоже на эвтектическое, но протекает в твердом состоянии.

Эвтектоид системы железо – цементит называется перлитом (П), содержит 0,8 % углерода.

Название  получил за то, что на полированном и протравленном шлифе наблюдается  перламутровый блеск.

Перлит  может существовать в зернистой  и пластинчатой форме, в зависимости  от условий образования.

По линии PQ начинается выделение цементита  третичного из феррита, обусловленное  снижением растворимости углерода в феррите при понижении температуры.

Температуры, при которых происходят фазовые  и структурные превращения в  сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения.

Обозначаются  буквой А (от французского arret – остановка):

А1 – линия PSK (7270С) – превращение П А;

A2 – линия  MO (7680С, т. Кюри) – магнитные  превращения;

A3 – линия  GOS ( переменная температура, зависящая от содержания углерода в сплаве) – превращение Ф А;

A4 – линия  NJ (переменная температура, зависящая  от содержания углерода в сплаве) – превращение  ;

Acm – линия SE (переменная температура, зависящая от содержания углерода в сплаве) – начало выделения цементита вторичного (иногда обозначается A3).

Так как  при нагреве и охлаждении превращения  совершаются при различных температурах, чтобы отличить эти процессы вводятся дополнительные обозначения. При нагреве  добавляют букву с, т.е , при охлаждении – букву r, т.е. . 

 

 

 

 

 

 

 

3  Испытание материалов на растяжение. Определение предела текучести

 

 

Испытание на растяжение  материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.

Для испытаний применяют плоские  и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l0 и исходного диаметра d0 : l0= 5d0- короткий образец, l0= 10d0 - длинный образец. Для плоского образца берется соотношение рабочей длины l0 и площади поперечного сечения F0:

l0= 5,65√F0 - короткий образец, l0= 11,3√F0  - длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l0  и головок, форма и размер которых соответствуют захватам машины (рис. 3). 

 

  

 

Рис. 3. Цилиндрические и плоские  образцы до (а) и после (б) испытания  на растяжение 

 

 

 

Растяжение образца проводят на специальных машинах, позволяющих  фиксировать величину прилагаемой  нагрузки и изменение длины образца  при растяжении. Эти же машины дают возможность записывать изменение  длины образца при увеличении нагрузки (рис. 4), т.е. первичную диаграмму  испытания на растяжение в координатах: нагрузка Р, Н, кН; и абсолютное удлинение  образца А, мм. 

 

 

Рис. 4. Первичная диаграмма растяжения  

 

Измеряя величину нагрузки в характерных  точках диаграммы испытаний на растяжение (рис.4), определяют следующие параметры механических свойств материалов:

σ пц- предел пропорциональности, точка р;

σ 0,05 - предел упругости, точка е;

σ т - предел текучести физический, точка s;

σ 0,2- предел текучести условный;

σ в - временное сопротивление разрыву, или предел прочности, точка b. 

 

Значения 0,05 и 0,2 в записи предела  упругости и текучести соответствуют величине остаточной деформации ∆l в процентах от l0 при растяжении образца. Напряжения при испытании на растяжение вычисляют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F0 рабочей части испытуемого образца:

σпц=Pпц / F0 ; σ0,05=P 0,05 / F0 ; σт=Pт / F0 , или σв=P max / F0

 

 

 

Площадь поперечного сечение F0определяется по следующим формулам:

для цилиндрического образца 

 

F0 = πd02/ 4 

 

для плоского образца 

 

F0 = a0*b

 

где а0 - первоначальная толщина; b0 - первоначальная ширина образца.

В точке k устанавливают напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, находя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.5). Вначале находят величину остаточной деформации, равную 0,2 % от l0, далее отмечают отрезок на оси деформации, равный 0,2 % от l0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения, до пересечения с кривой растяжения.  

 

 

Рис. 5. Определение предела текучести  

 

Нагрузка P0,2 соответствует точке их пересечения. Физический и условный предел текучести характеризуют способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

Предел прочности можно подсчитать, используя показания силоизмерителя, по максимальной нагрузке Рmax при разрыве либо найти Рmaxв) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются  без значительной пластической деформации, поэтому σв для

хрупких материалов является характеристикой  сопротивления разрушению, а для  пластичных - характеристикой сопротивления  деформации.

Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения FK

 

Sк=Pк/Fк 

 

Все рассчитанные таким образом  величины являются характеристиками прочности материала.  

 

Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют следующие характеристики пластичности:

относительное удлинение 

 

δ=(lk-l0)/ l0*100% 

 

относительное сужение 

 

Ψ=(F-F)/ F0*100% 

 

где lк, Fк — соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.

 

 

 

 

 

4  Технология термической обработки. Обработка стали холодом

 

 

Высокоуглеродистые и многие легированные стали имеют температуру конца  мартенситного превращения (Мк) ниже 0oС. Поэтому в структуре стали после закалки наблюдается значительное количество остаточного аустенита, который снижает твердость изделия, а также ухудшает магнитные характеристики. Для устранения аустенита остаточного проводят дополнительное охлаждение детали в области отрицательных температур, до температуры ниже т. Мк (- 80oС). Обычно для этого используют сухой лед.

Такая обработка называется обработкой стали холодом.

Обработку холодом необходимо проводить  сразу после закалки, чтобы не допустить стабилизации аустенита. Увеличение твердости после обработки холодом обычно составляет 1…4 HRC.

Обработке холодом подвергают детали шарикоподшипников, точных механизмов, измерительные инструменты.

Обработка холодом заключается  в охлаждении закалённой стали до температуры ниже Мк.

Понижение температуры до температуры  ниже точки конца мартенситного  превращения Мк вызывает превращение аустенита в мартенсит, что повышает твёрдость стали. Однако, одновременно возрастают внутренние напряжения, поэтому деталь охлаждают медленно и сразу после обработки холодом проводят низкий отпуск.

Установка для обработки холодом.

 

Рис.2 Камера шкафная

 

Для охлаждения небольшого числа отдельных  деталей, например, режущего инструмента, калибров и других изделий из высоколегированной стали применяют камеры полезным объемом 0,1—1,0м3. Камера шкафная (КТХ) оборудована компрессорной установкой, обеспечивающей охлаждение до —100°С, и электронагревателями, позволяющими нагревать камеру до 155°С. На рис.2 показан разрез камеры КТХ. Машинное отделение расположено в нижней части камеры. Электрические нагреватели расположены под рабочим пространством камеры. Крыльчатка вентилятора, вращаемая электродвигателем, направляет поток воздуха в воздухоохладитель, в котором размещён змеевик, последовательно соединённый со змеевиком испарителя, припаянным к поверхности внутреннего корпуса камеры. Через окно в двери можно при включенном осветительном приборе осматривать внутреннее пространство камеры.

 

5   Антифрикционные материалы. Их состав, применение и маркировка

 

Антифрикционные материалы предназначены для изготовления подшипников (опор) скольжения, которые широко применяют в современных машинах и приборах из-за их устойчивости к вибрациям, бесшумности работы, небольших габаритов.

Основные служебные свойства подшипникового материала антифрикционность и сопротивление усталости. Антифрикционность — способность материала обеспечивать низкий коэффициент трения скольжения и тем самым низкие потери на трение и малую скорость изнашивания сопряженной детали стального или чугунного вала.

Антифрикционность обеспечивают следующие свойства подшипникового материала: 1) высокая теплопроводность; 2) хорошая смачиваемость смазочным материалом; 3) способность образовывать на поверхности защитные пленки мягкого металла; 4) хорошая прирабатываемость, основанная на способности материала при трении легко пластически деформироваться и увеличивать площадь фактического контакта, что приводит к снижению местного давления и температуры на поверхности подшипника.

Критериями для оценки подшипникового материала служат коэффициент трения и допустимые нагрузочно-скоростные характеристики: давление р, действующее на опору, скорость скольжения v, параметр pv, определяющий удельную мощность трения. Допустимое значение параметра pv тем больше, чем выше способность материала снижать температуру нагрева и нагруженность контакта, сохранять граничную смазку.

Для подшипников скольжения используют металлические материалы, неметаллы, комбинированные материалы и минералы (полу- и драгоценные камни). Выбор материала зависит от режима смазки и условий работы опор скольжения.

Металлические материалы. Они предназначены для работы в режиме жидкостного трения, сочетающемся в реальных условиях эксплуатации с режимом граничной смазки. Из-за перегрева возможно разрушение граничной масляной пленки. Поведение материала в этот период работы зависит от его сопротивляемости схватыванию. Оно наиболее высоко у сплавов, имеющих в структуре мягкую составляющую.

Информация о работе Доход и прибыль. Виды и функции прибыли