Автор работы: Пользователь скрыл имя, 07 Декабря 2013 в 23:23, доклад
В медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Антибиотики — самый большой класс фармацевтических соединений, получение которых осуществляется с помощью микробиологического синтеза. Созданы генно-инженерные штаммы кишечной палочки, дрожжей, культивируемых клеток млекопитающих и насекомых, используемые для получения ростового гормона, инсулина и интерферона человека, различных ферментов и противовирусных вакцин.
ВВЕДЕНИЕ 2
БИОТЕХНОЛОГИЧЕСКОЕ ПРОИЗВОДСТВО АНТИБИОТИКОВ 3
НАПРАВЛЕННЫЙ БИОСИНТЕЗ АНТИБИОТИКОВ 5
МУТАСИНТЕЗ 8
ЗАКЛЮЧЕНИЕ 9
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 10
МИНИСТЕРСТВО СЕЛЬСКОГО
ФГОУ ВПО «ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»
ФАКУЛЬТЕТ БИОТЕХНОЛОГИИ И ВЕТЕРИНАРНОЙ МЕДИЦИНЫ
КАФЕДРА ХИМИИ
Доклад на тему:
«БИОТЕХНОЛОГИЧЕСКИЙ СИНТЕЗ АНТИБИОТИКОВ»
Выполнил: студент курса
направления «Биотехнология»
группа Био-311
Гришина К.В.
Проверила: доцент х.н. Хилкова Н.Л.
Орел 2013г
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 2
БИОТЕХНОЛОГИЧЕСКОЕ ПРОИЗВОДСТВО АНТИБИОТИКОВ 3
НАПРАВЛЕННЫЙ БИОСИНТЕЗ АНТИБИОТИКОВ 5
МУТАСИНТЕЗ 8
ЗАКЛЮЧЕНИЕ 9
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 10
Биотехнология
- это производственное использование
биологических агентов или их
систем для получения ценных продуктов
и осуществления процессов
В
медицине биотехнологические приемы и
методы играют ведущую роль при создании
новых биологически активных веществ
и лекарственных препаратов, предназначенных
для ранней диагностики и лечения
различных заболеваний. Антибиотики
— самый большой класс
Антибиотики
- самый большой класс
Шесть родов феламентозных грибов производят около 1000 различных антибиотиков. Много антибиотиков синтезируют актиномицеты (один только вид Streptomyces griscus производит более 50 антибиотиков). В практике реально используют небольшое число из известных пауке антибиотиков, производимых микроорганизмами. Это в первую очередь пенициллины и цефалоспорины, продуцируемые грибами родов Penicillum; стрептомицин, гентамицин, канамицин, эритромицин и тетрациклины, синтезируемые актиномицетами рода Streptomyces и бактериями родов Micromonospora и Bacillus, и некоторые другие. До “эры” генной инженерии ценные для промышленности штаммы-продуценты антибиотиков с повышенной продуктивностью получали в основном с помощью мутагенеза и селекции природных микроорганизмов. Например, в результате селекции и улучшения техники ферментации промышленный выход пенициллина достиг 20 г/л, что в 10 тыс. раз выше уровня, который имелся в исходном штамме Penicillum chrysogenum.
Причины неослабевающего внимания к поиску новых антибиотиков связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики. Основные пути поиска включают:
Важной задачей является повышение эффективности биосинтеза известных антибиотиков. Значительных результатов удалось добиться за десятилетия селекции штаммов-продуцентов с применением индуцированного мутагенеза и ступенчатого отбора. Например, продуктивность штаммов Penicillium по синтезу пенициллина увеличена в 300—350 раз. Определенные перспективы открываются в связи с возможностью клонирования генов «узких мест» биосинтеза антибиотика или в случае, если все биосинтетические ферменты кодируются единым опероном.
Многообещающим подходом служит инкапсулирование антибиотиков, в частности их включение в лигюсомы, что позволяет прицельно доставлять препарат только к определенным органам и тканям, повышает его эффективность и снижает побочное действие. Этот подход применим и для других лекарственных препаратов. Например, кала-азар, болезнь, вызываемая лейгшманией, поддается лечению препаратами сурьмы. Однако лечебная доза этих препаратов токсична для человека. В составе липосом препараты сурьмы избирательно доставляются к органам, пораженным лейшманией, — селезенке и печени.
Вместо антибиотика в организм человека может вводиться его продуцент, антагонист возбудителя заболевания. Этот подход берет начало с работ И. И.Мечникова о подавлении гнилостной микрофлоры в толстом кишечнике человека посредством молочнокислых бактерий. Важную роль в возникновении кариеса зубов, по-видимому, играет обитающая во рту бактерия Streptococcus mutans, которая выделяет кислоты, разрушающие зубную эмаль и дентин. Получен мутант Strept. mutans, который при введении в ротовую полость почти не образует коррозивных кислот, вытесняет дикий патогенный штамм и выделяет летальный для него белковый продукт.
Под направленным биосинтезом антибиотиков следует понимать вмешательство экспериментатора в метаболизм организма-продуцента (главным образом микроорганизма) для получения одного либо нескольких антибиотиков или же новых по сравнению с обычно образующимися соединениями форм антибиотических веществ. В результате направленного биосинтеза удается модифицировать известные антибиотики, отличающиеся от исходных веществ рядом ценных свойств, которые не могут быть синтезированы химическим путем. Поэтому изучение вопросов, связанных с названной проблемой, имеет существенное теоретическое и практическое значение. Многие микроорганизмы в процессе жизнедеятельности способны одновременно образовывать несколько антибиотических веществ, как близких по химическому строению и биологическому действию, так и значительно различающихся. Например, Streptomyces albireticuli вырабатывает три антибиотика: эйромицин, энтеромицин и карбомицин; S. showdoensis — четыре антибиотика: актиномицин в мицелии и три антибиотика в культу-ральной жидкости: макролид, шоудомицин и антибиотик неизвестной природы. В культуре S. netropsis одновременно образуются антигрибные полиеновые антибиотики (смесь тетраена, пентаена и гептаена) и антибактериальное вещество.
Изучение закономерностей биосинтеза того или иного антибиотического вещества, выяснение условий развития организма, обеспечивающих преимущественное образование одного из возможных антибиотиков, дает возможность вмешиваться в биосинтетическую деятельность микроба и давать ей нужное направление. Так, достаточная аэрация культуры S. griseus обеспечивает благоприятные условия для преимущественного накопления стрептомицина и тормозит образование маннозидострептомици-на. При хорошей аэрации среды создаются условия оптимальной деятельности фермента маннозидострептомициназы, расщепляющего менее активный антибиотик маннозидострептомицин на стрептомицин и маннозу. Отсутствие в среде ионов хлора или наличие в субстрате наряду с хлором веществ, ингибирующих процесс биологического хлорирования, приводит к накоплению в культуре S. aureofaciens не хлортетрациклина, а тетрациклина или другого аналога из этой группы антибиотиков.
Наряду с изменением условий культивирования микроба не менее важную роль в проблеме получения того или другого антибиотика играет селекция организмов. В результате обработки продуцентов антибиотиков мутагенами и последующей селекции получены штаммы продуцентов, образующие нежелательный антибиотик в небольшом количестве, а нужный препарат составляет при биосинтезе основную часть продукции. Так, продуцент стрептомицина S. griseus может вырабатывать одновременно со стрептомицином и значительное количество нежелательного антибиотика маннозидострептомицина. В результате селекции получены штаммы S. griseus, образующие маннозидострептомицина не более 5% от общего выхода антибиотика.
Для
направленного образования
Использование
комбинации мутантов — продуцентов
антибиотических веществ и
Мутасинтез — один из перспективных методов получения новых антибиотиков методом направленного биосинтеза. Суть его состоит в том, что в результате генетических манипуляций получают мутант продуцента, который потерял способность синтезировать один или несколько фрагментов молекулы антибиотика. При внесении в среду для культивирования такого мутанта недостающих фрагментов, синтезированных химическим путем, или других, близких им по химической структуре соединений, мутант способен включать их в молекулу образуемого антибиотика.
В настоящее время не вызывает сомнений утверждение, что будущее фармацевтической отрасли в большой степени будет определяться биотехнологиями. В отличие от традиционных лекарственных средств, полученных методами химического синтеза, в фармацевтических биотехнологиях используются методики, позволяющие создавать соединения, составляющие основу лекарственных препаратов, зачастую идентичные естественным. Главным преимуществом лекарственных препаратов, полученных биотехнологическим путём, является их высокая специфичность по отношению к факторам, связанным с возникновением и развитием болезни. Этот подход позволил создать ряд препаратов для лечения таких недугов, как онкологические, сердечно-сосудистые, нейродегенеративные заболевания.
Режим
доступа : http://www.biotechnolog.ru/