Биогеохимия педосферы

Автор работы: Пользователь скрыл имя, 21 Января 2014 в 14:22, реферат

Краткое описание

Образование педосферы и освоение Мировой суши живым веществом повлекло за собой изменение его количества и структуры, а также всей динамики глобальных биогеохимических процессов. Биокосная система почвы сложилась как оптимальный природный механизм обеспечения жизнедеятельности фотосинтезирующих растений, создающих основу функционирования биоценозов - первичное органическое вещество. В дальнейшем благодаря разнообразным взаимосвязанным биогеохимическим процессам в почве стало осуществляться взаимодействие всех факторов и компонентов, образующих конкретную биогеосистему (ландшафт). Это взаимодействие происходит путем непрерывной циклической миграции масс химических элементов.

Прикрепленные файлы: 1 файл

Реферат Биогеохимия педосферы.docx

— 34.56 Кб (Скачать документ)

Минобрнауки России

ФГБОУ ВПО «Астраханский  Государственный Университет»

геолого – географический факультет

МАГИСТРАТУРА

 

 

 

 

 

 

 

 

РЕФЕРАТ

на тему: «Биогеохимия педосферы» 

по предмету: «Биогеохимия»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Астрахань 2013

 

Почва возникла как природный  механизм, нейтрализующий неблагоприятные  условия окружающей среды и создающий возможность для развития фотосинтезирующих организмов. С течением геологического времени этот механизм совершенствовался и способствовал «расползанию» живого вещества по поверхности суши. Первоначально локализованная на отдельных участках вблизи берегов морей и внутренних водоемов почва постепенно покрыла всю сушу тонкой, почти непрерывной оболочкой, названной В.И. Вернадским (1936) педосферой.

Образование педосферы и освоение Мировой суши живым веществом повлекло за собой изменение его количества и структуры, а также всей динамики глобальных биогеохимических процессов. Биокосная система почвы сложилась как оптимальный природный механизм обеспечения жизнедеятельности фотосинтезирующих растений, создающих основу функционирования биоценозов - первичное органическое вещество. В дальнейшем благодаря разнообразным взаимосвязанным биогеохимическим процессам в почве стало осуществляться взаимодействие всех факторов и компонентов, образующих конкретную биогеосистему (ландшафт). Это взаимодействие происходит путем непрерывной циклической миграции масс химических элементов.

Распространившись на всю  поверхность Мировой суши, педосфера приобрела значение главного звена и регулятора глобальных циклических процессов массообмена химических элементов. Педосфера в равной мере связана массообменом элементов с земной корой, живым веществом и атмосферой. В педосфере происходит мобилизация химических элементов, вовлекаемых в водную миграцию и затем выносимых в океан. С поверхности педосферы захватываются мелкие почвенные частицы, формирующие континентальные аэрозоли, частично выносимые за пределы суши. В то же время на поверхность педосферы поступают атмосферные осадки, переносящие химические элементы, в том числе выделенные с поверхности океана. И главное - в педосфере начинается и заканчивается грандиозный кругооборот химических элементов: педосфера - растительность Мировой суши. Все перечисленные процессы являются в основе биогеохимическими. Современные данные позволяют рассматривать педосферу как планетарный механизм, который благодаря сложной системе взаимообусловленных процессов регулирует биосферные циклы массообмена химических элементов.

2. Органическое  вещество педосферы

Органическое вещество является одним из наиболее важных компонентов  педосферы. Огромная масса органического вещества преимущественно растительного происхождения ежегодно поступает в педосферу. В зависимости от биоклиматических условий в разных районах Мировой суши (за исключением территории, покрытой ледниками, и абсолютных пустынь) поступление мертвого органического вещества колеблется от 100 до 2500 т/кмв год. Суммарная масса ежегодно отмирающего органического вещества (с учетом сокращения природной растительности человеком) близка к (125-130)10т.

Разное количество поступающих  растительных остатков, неодинаковая направленность и интенсивность  микробиологической деятельности, разнообразные  гидротермические условия способствуют образованию весьма сложного комплекса  органических соединений гумуса почв. Состав почвенного гумуса динамичен: он непрерывно обновляется в результате разложения и синтеза его компонентов.

В органическом веществе почвы  различают три главные группы. Первую группу составляют почти не разложившиеся или слаборазложившиеся остатки преимущественно растительного  происхождения. Они образуют лесные подстилки, степной войлок. Это так  называемый грубый гумус. В нем под  микроскопом хорошо видны все  детали растительной ткани - конфигурация клеток, толщина их оболочек и др. Наименее стойкие ткани (камбий, флоэма, паренхима первичной коры) разрушены.

Ко второй группе относятся  остатки, образующие рыхлое черное вещество. Только под микроскопом видно, что  это вещество состоит из измельченных и сильно измененных растительных остатков: мелких обрывков растительных тканей, лишь отчасти сохранивших реликты  клеточного строения и обильно пропитанных  новообразованными органическими  соединениями. Такая форма почвенного органического вещества называется модер.

Третья группа состоит  из специфических почвенных органических образований, не обнаруживающих следов строения растительных тканей и составляющих собственно гумус. Это аморфные скопления  от хорошо прозрачных светло-желтых до плохо прозрачных темно-бурых. В одних почвах гумусовые вещества диффузно распределены в почвенном матриксе, в других - склеивают мелкие минеральные частицы, образуя гумус типа муллъ.

Перечисленные формы почвенного органического вещества образуются в условиях хорошей аэрации. При  длительном водонасыщении почвы  деятельность мезофауны и аэробных микроорганизмов подавляется и преобразование растительных остатков замедляется. В таких условиях из осадков гидрофильных растений, главным образом мхов, образуется торф. Его характерные черты: слабая разложенность растительных осадков (менее 30%) и волокнистое строение благодаря преобладанию мхов среди растений-торфообразователей. Органическое вещество почвы, состоящее из торфяных компонентов, называется гумусом типа мор. Между рассмотренными формами почвенного органического вещества существуют постепенные переходы.

Таким образом, органическое вещество почвы состоит из слабоизмененных  остатков растений, продуктов их измельчения  и первоначального преобразования мезофауной и микроорганизмами, а также из специфических почвенных органических веществ. Две последние категории составляют собственно почвенный гумус.

Трансформация органического  вещества в почве происходит под  воздействием жизнедеятельности микроорганизмов. Разные микроорганизмы и свойственные им ферменты взаимодействуют с определенными  компонентами растительных остатков. Неспороносные бактерии используют наиболее доступные компоненты: простые  углеводы, аминокислоты, простые белки. Целлюлозные миксобактерии перерабатывают устойчивые углеводы. Актиномицеты завершают процесс, разлагая наиболее устойчивые компоненты растительных остатков и гумусовые вещества.

Образование гумусовых веществ протекает при участии процессов двух типов. Процессы первого типа обеспечивают частичное разложение поступивших органических соединений до более простых. Например, белки расщепляются на аминокислоты, углеводы - на простые сахара и т.д.

Процессы второго типа значительно сложнее. Это связано  с тем, что гидролиз органических полимеров прерывается, если фермент  встречается с неоднородностью  в строении полимера.

Примером может служить  случай, когда фермент, специализированный на преобразовании целлюлозы, встречается  с лигнифицированной частью полимера. Остатки труднопреобразуемых веществ накапливаются и служат исходным материалом для специфических химических реакций конденсации. Эти реакции, отсутствующие среди биологических реакций полимеризации, приводят к образованию весьма устойчивых соединений.

В результате процессов второго  типа происходит конденсация ароматических  соединений фенолъного типа (продуктов распада лигнина и целлюлозы) с аминокислотами (продуктами распада микроорганизмов). В процессе окисления и конденсации образуются карбоксильные группы, которые вместе с фенолгидроксильными группами способствуют кислотному характеру гумусовых веществ.

Основными компонентами гумуса являются гуминовые и фульвокислоты, их соли, а также гумин - своеобразный комплекс сильно полимеризованных высокомолекулярных гумусовых кислот, связанных с высокодисперсными минеральными частицами. Между этими компонентами существуют переходы.

Гумусовые кислоты - высокомолекулярные соединения со сложной структурой. Согласно Д.С. Орлову (1974), структурная ячейка гуминовых кислот из дерново-подзолистой почвы имеет вид C173H183O86N11, из чернозема - C73H61O32N4; структурная ячейка фульвокислот из дерново-подзолистой почвы - C270H318O206N16, из чернозема - C260H280O177N15. В составе гуминовых кислот содержание углерода колеблется от 40 до 60%, азота - от 3,5 до 6%. Фульвокислоты содержат меньше углерода и азота: соответственно от 35 до 50% и от 3 до 4,5%.

Основными структурными единицами  сложных молекул гуминовых кислот являются сконденсированная центральная  часть (ядро) и боковые цепи, состоящие  из функциональных групп.

Реакционная способность  гуминовых кислот связана с карбоксильными и фенолгидроксильными группами, водород которых может замещаться другими катионами. Часть водорода функциональных групп замещается комплексными катионами типа Fe(OH)и т.п. В результате образуются сложные внутрикомплексные соединения - хелаты железа, алюминия и других металлов. Гуминовые кислоты не растворяются в воде, но хорошо растворимы в щелочных растворах.

Фульвокислоты имеют похожее строение, но в них боковые цепи преобладают над ядром. Содержание карбоксильных и фенолгидроксильных групп больше, чем у гуминовых кислот. Фульвокислоты растворяются в воде, растворы имеют сильнокислую реакцию (рН 2,6-2,8). Растворяющая способность фульвокислот усиливается их склонностью к хелатированию. Комплексные соединения фульватов могут активно мигрировать в природных водах в таких физико-химических условиях, где свободные катионы металлов выпадают в осадок.

Изучение распределения  металлов в гумусовых кислотах, выделенных из подзолистых почв северо-запада европейской части России, показало, что концентрация меди, цинка, свинца и никеля значительно выше в фульвокислотах.

И.З. Рабинович (1969) определил содержание некоторых тяжелых металлов в гуминовых кислотах, извлеченных из распространенных почв Молдавии. Обнаружено, что концентрация металлов в гуминовых кислотах значительно выше не только их концентрации в изученных почвах, но и средней концентрации в растительности Мировой суши. Так, в гуминовых кислотах из чернозема, являющихся наиболее важной частью гумуса этих почв, концентрация цинка более чем в 2 раза выше средней концентрации этого элемента в растительности суши, ванадия - в 17 раз, хрома и кобальта - еще больше.

Селективное соединение рассеянных металлов с водорастворимыми компонентами гумуса (фульвокислотами) или с гелями гуминовых кислот имеет важное значение как для вовлечения металлов в миграционные циклы, так и для выведения их из миграции и закрепления в почве.

Таким образом, гумус почв играет двоякую роль. С одной стороны, он выступает как источник азота  и других элементов, приоритетно  необходимых для высших растений и освобождающихся из органического  вещества в результате микробиологической деятельности. Поэтому гумус почв - важный фактор продуктивности фитоценозов  и плодородия почв. С другой стороны, гумусовые кислоты и их производные  благодаря особенностям молекулярного  строения активно влияют на миграцию и аккумуляцию химических элементов  в педосфере. По этой причине гумусовые вещества являются важной частью механизма регулирования миграционных потоков в педосфере.

Отмирающие части растений поступают в почву в виде ежегодного опада. Его количество не пропорционально биомассе растительности. Так, лесные сообщества южной тайги, обладающие огромной биомассой (более 3000 ц/га сухого вещества), вносят в почву ежегодно около 50 ц/га сухого вещества, в то время как у растительности луговых степей, имеющей значительно меньшую биомассу (250 ц/га), опад почти в 3 раза больше.

Значительная часть растительных остатков располагается на поверхности  почвы в виде лесной подстилки  в лесах, травяного войлока в  травянистых сообществах, скоплений  торфа в заболоченных ландшафтах. Присутствие растительных остатков указывает, что их разложение идет медленнее, чем поступление новых продуктов  отмирания.

Об интенсивности переработки  растительных остатков мезофауной и микроорганизмами в почвенный гумус можно судить по соотношению количества мертвого органического вещества на поверхности почвы и его ежегодного поступления на поверхность. По данным Л.Е. Родина и Н.И. Базилевич, это соотношение имеет наиболее высокое числовое значение (90) в тундровых ландшафтах. Это означает, что в суровых условиях тундры жизнедеятельность почвенной мезофауны и микроорганизмов настолько сильно подавлена, что полная переработка годового опада растительности растягивается на 90 лет, а биологический круговорот химических элементов сильно заторможен. В ландшафтах степей это соотношение равно 1,0-1,5, т.е. преобразование опада совершается в течение одного-двух лет. В пустыне это происходит еще быстрее, так как растительные остатки на почве практически отсутствуют. В лесных сообществах числовое значение рассматриваемого соотношения зависит от гидротермических условий и длительности теплого сезона, допускающего жизнедеятельность мезофауны и микроорганизмов. В почве таежных лесов полная переработка растительных остатков происходит за 7-8 лет, в широколиственных лесах умеренного пояса за 2-3 года, во влажных экваториальных лесах непрерывно на протяжении года. Столь быстрое разложение растительных остатков происходит при условии свободного газообмена почвы с атмосферой, который способствует активной аэробной мезо- и микробиологической деятельности. В тех местах, где мертвое органическое вещество насыщено водой, газообмен затруднен. Это подавляет деятельность аэробных организмов, сильно замедляет разложение растительных остатков и приводит к образованию торфа. Замедлению процесса также способствует присутствие в торфяных водах растворимых органических соединений с антисептирующими свойствами. В результате полуразложившиеся остатки растений сохраняются в торфяных залежах тысячи лет.

Информация о работе Биогеохимия педосферы