Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 19:57, отчет по практике
Цель: изучить закономерности распределения и динамику концентраций биогенных веществ. Задачи:
Проанализировать формы нахождения биологических веществ в природных водах.
Значение биогенных соединений в цикле развития фитопланктона.
Проанализировать содержание биогенных веществ в Новосибирском водохранилище:
А) Пространственная неоднородность
Б) Сезонная динамика
Оценить трофический статус Новосибирского водохранилища по содержанию биогенных веществ.
Введение 4
1 Биогенные элементы и их роль в жизни водоема 6
2 Формы нахождения биогенных веществ в природных водах 10
3 Значение биогенных соединений в цикле развития фитопланктона 15
4 Эвтрофикация и термофикация водоемов 18
4.1 Сущность процессов эвтрофикации и термофикации 18
4.2 Проявления и причины антропогенной эвтрофикации. 20
4.3 Вещества и их соотношение, способствующие эвтрофикации 22
4.4 Предупреждение антропогенной эвтрофикации. 25
5 Трофический статус Новосибирского водохранилища по содержанию биогенных веществ 28
Выводы 31
Библиографический список 32
Кремний в природных водах присутствует как в виде минеральных, так и органических соединений. Из минеральных соединений кремния, прежде всего, следует отметить кремневую кислоту, которая как слабая кислота мало диссоциирует.
Содержание кремния в воде с большей частью находится в пределах 1-5 миллиграмм на литр. Режим его характеризуется некоторым повышением концентрации в зимний период при усилении грунтового питания.
Соединения углерода в природных водах содержаться в виде оксидов и карбонатов.
Главным источником поступления оксида углерода в природные воды являются процессы биохимического распада органических остатков, окисления органических веществ, дыхания водных организмов.
Одновременно с процессами поступления значительная часть диоксида углерода потребляется при фотосинтезе, а также расходуется на растворение карбонатов и химическое выветривание алюмосиликатов.
Основным источником гидрокарбонатных и карбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов.
Некоторая часть гидрокарбонатных ионов поступает с атмосферными осадками и грунтовыми водами. Гидрокарбонатные и карбонатные ионы выносятся в водоемы со сточными водами предприятий химической, силикатной, содовой промышленности и т.д.
В речных водах содержание гидрокарбонатных и карбонатных ионов колеблется от 30 до 400 мг HCO3-/дм3, в озерах - от 1 до 500 мг HCO3-/дм3, в морской воде - от 100 до 200 мг/дм3, в атмосферных осадках - от 30 до 100 мг/дм3, в грунтовых водах - от 150 до 300 мг/дм3, в подземных водах - от 150 до 900 мг/дм3 [11].
Факторы, влияющие на развитие фитопланктона, можно разделить на энергетические (свет) и субстратные (биогенные элементы). Основные субстратные факторы, ограничивающие развитие фитопланктона в природе, - P, N, а для диатомовых водорослей еще и Si, причем каждый из этих биогенных элементов может действовать по отдельности. О том, как взаимодействуют N, P и Si в экосистемах и каково влияние этого взаимодействия на рост отдельных таксонов и, следовательно, на структуру альгоценоза, известно немного. Тем не менее, в ряде работ доказана важная регулирующая роль соотношения концентраций N, P и Si в водной среде. Характер перестройки альгоценоза при смене этого отношения изучался как в натурных и лабораторных экспериментах с природным фитопланктоном, так и в опытах с микрокосмами - искусственными сообществами микроводорослей. Цель обзора - обсудить, какой из факторов - абсолютные концентрации элементов или их относительные количества - в большей степени определяет состав альгоценоза [13].
Эвтрофирование озер ведет, прежде всего, к увеличению развития фитопланктона и что последнее прямо зависит от насыщения водоема биогенными веществами. Стоит лишь концентрации азота и фосфора в воде достичь определенной величины, как с неизбежностью должна последовать вспышка продукции планктоновых водорослей. При этом не принималось во внимание, что экосистемы некоторых озер, и в частности макрофитных, располагают своими защитными механизмами, позволяющими им некоторое время сохранять устойчивость к возрастающей антропогенной нагрузке. Как показывают исследования, основной механизм защиты связан со способностью ряда видов водных растений накапливать в своих тканях биогенные соединения азота и фосфора сверх того количества, которое необходимо и достаточно для их максимального развития. Это свойство, несомненно, выработано в ходе совместной эволюции компонентов пресноводных фитоценозов и имеет защитный характер. Средства индивидуальной устойчивости популяций, относящиеся по своей природе к физиологическому уровню при их объединении сформировали регулятор, который можно рассматривать как общий для озерной макрофитной экосистемы. Традиционные представления о связи явлений сводятся к следующей причинно-следственной цепочке: увеличение поступления биогенных веществ с водосбора > увеличение их концентрации в озерной воде > вспышка продукции фитопланктона.
При подробном изучении, последовательность
событий выглядит гораздо сложнее: увеличение
поступления биогенных веществ с водосбора
> накопление их в тканях макрофитов
> насыщение тканей > накопление биогенов
в нитчатых водорослях > насыщение тканей
нитчатых водорослей > обогащение воды
биогенами > вспышка продукции фитопланктона.
Указанные отличия имеют принципиальное
значение. Новое представление о процессах
в озерных экосистемах при их переходе
в евтрофное состояние можно выразить
в форме модели. Согласно описанию процесса,
модель должна воспроизвести наличие
в структуре системы мезотрофного озера
регулятор, позволяющий ей сопротивляться
шуму в виде добавок биогенных веществ.
Регулятор имеет характер контура положительной
обратной связи. Такой тип связи действует
по схеме самоусиления. Из вышеприведенного
описания следует, что экосистема, возникающая
после критического перехода, также располагает
механизмом защиты, действующим по такой
же схеме. Различия между ними заключаются
не в принципе регулирования, а лишь в
конкретной его реализации. В первой экосистеме
этот принцип реализуется сообществом
погруженных макрофитов, которое обеспечивает
гомеостазис системы, преобразуя фитогенную
среду путем изъятия из нее элементов
минерального питания. Во второй экосистеме
фитопланктон делает среду неблагоприятной
для погруженных макрофитов, меняя освещенность
в водоеме. Эти две экосистемы, однако,
не независимы друг от друга. Наоборот,
они энергично взаимодействуют и связь
между ними имеет конкурентный характер
[14].
Антропогенная эвтрофикация водоемов вызывается: сбросами биогенов, изменением гидрологического режима (скорость течения воды в водохранилищах замедляется; при падении уровня озер происходит мобилизация биогенов из донных отложений), смывом поверхностного слоя почвы и т.д. Антропогенная эвтрофикация водоемов приводит, как правило, к нарушению биологического равновесия: изменяется альгофлора (видовой состав водорослей), изменяется плотность популяций водорослей. Резко возрастает плотность популяций миксотрофных видов. Плотность популяций зеленых водорослей снижается. В дальнейшем при отмирании этих видов снижается содержание кислорода, повышается содержание сероводорода. Кроме того, ряд водорослей выделяет токсины, прямо убивающие гидробионтов.
Неантропогенная эвтрофикация наблюдается при изменении направления морских течений, при сезонном изменении освещенности и температуры. Печально известны "красные приливы" (бурное размножение пирофитовых водорослей), которые приводят к накоплению токсинов в тканях моллюсков и других гидробионтов. Это приводит к массовой гибели этих организмов и к пищевым отравлениям населения, употребляющего в пищу эти организмы.
Термофикация водоемов — это изменение их температурного режима, вызываемое поступлением подогретых вод с тех или иных предприятий, в первую очередь тепловых электростанций. Повышение температуры воды ускоряет круговорот веществ в экосистеме, в частности первичное продуцирование (при достаточном количестве биогенов), что служит дополнительной предпосылкой эвтрофикации водоемов. Вместе с тем нарушение естественного температурного режима сопровождается изменением флоры и фауны водоемов, часто вызывая существенные сдвиги в структуре и функциях исходных экосистем в нежелательном направлении. Эвтрофикация и термофикация водоемов часто сопровождаются ухудшением их социального значения и биосферных функций экосистем. В этом случае оба явления выступают как особые формы загрязнения. Однако эвтрофикация и термофикация не всегда ведут к деградации водных экосистем и могут оказаться полезными для человека. Например, термофикация водоемов расширяет перспективы развития аквакультуры, то же значение имеет повышение трофности водоемов при умелом овладении новым потенциалом. Кроме того, следует четко различать два процесса: дополнительное поступление в водоемы биогенов и тепла (предпосылки эвтрофикации) и само это явление (эвтрофикацию). В рыбоводстве дорогостоящие биогены специально вводят в водоемы ради повышения продуктивности; об опасности эвтрофикации прудов речь не идет. Интенсивное поступление биогенов в озера и водохранилища не всегда сопровождается их эвтрофированием, если направить работу экосистем в нужном направлении. Например, изъятие из водоемов органики в форме полезной продукции может проводиться в масштабах, уравновешивающих ее перепроизводство вследствие дополнительного поступления биогенов. В системе будет сохраняться одно и то же количество биогенов, баланс нормализуется, и явления эвтрофикации окажутся исключенными. Перспективы управления продуктивностью водоемов могут предусматривать и другие средства в борьбе с эвтрофикацией, в частности перекрытие различных каналов избыточного поступления биогенов в водоемы. Однако важно подчеркнуть, что поступление биогенов в водоемы нельзя отождествлять с ухудшением состояния последних, которое вызывается целым комплексом причин и условий. Таким должен быть подход и к оценке термофикации. Остановить рост строительства предприятий, сбрасывающих подогретые воды в водоемы-охладители, нельзя. Сброс подогретых вод усиливает опасность эвтрофикации и вреден лишь в той степени, в которой невозможно управлять экосистемными процессами. Овладение ими превратит термофикацию в источник дополнительных выгод за счет лучшего использования водоемов путем развития аквакультуры [15].