Автор работы: Пользователь скрыл имя, 13 Марта 2013 в 18:20, курсовая работа
В общей части обсуждены современные методы извлечения компонентов из газовых смесей. Принята абсорбционная установка непрерывного действия для очистки воздуха от аммиака производительностью 1.916м3/с. С начальным содержанием NH3 8.7% об. Выбраны основные технологические параметры процесса. Принята конструкция тарельчатой абсорбционной колонны с ситчатыми тарелками.
В технологическом расчете определены материальные потоки системы.
В конструктивном расчете определены основные конструктивные размеры колонны, обеспечивающие заданную степень разделения.
В гидравлическом расчете определено гидравлическое сопротивление колонны.
. Реферат
2. ВВЕДЕНИЕ
3. ОБЩАЯ ЧАСТЬ
3.1 Способы очистки промышленных газов от газообразных примесей
3.2 Физические основы процесса абсорбции
3.3 Схема абсорбционной установки
3.4 Устройство абсорберов
3.5 Выбор рабочих условий процесса
4. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ
4.1 Материальный баланс установки
4.2 Расчет средней движущей силы процесса
5. КОНСТРУКТИВНЫЙ РАСЧЕТ
5.1 Расчет скорости газа и диаметра абсорбера
5.2.Расчет высоты светлого слоя жидкости
5.3 Расчет коэффициентов массоотдачи
5.4 Расчет числа тарелок абсорбера
5.5 Выбор расстояния между тарелками и определение высоты абсорбера
6. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
6.1 Расчет гидравлического сопротивления тарелок абсорбера
6.2 Расчет и выбор штуцеров
7. ЛИТЕРАТУРА
Абсорбционная установка
СОДЕРЖАНИЕ
1. Реферат
2. ВВЕДЕНИЕ
3. ОБЩАЯ ЧАСТЬ
3.1 Способы очистки промышленных газов от газообразных примесей
3.2 Физические основы процесса абсорбции
3.3 Схема абсорбционной установки
3.4 Устройство абсорберов
3.5 Выбор рабочих условий процесса
4. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ
4.1 Материальный баланс установки
4.2 Расчет средней движущей силы процесса
5. КОНСТРУКТИВНЫЙ РАСЧЕТ
5.1 Расчет скорости газа и диаметра абсорбера
5.2.Расчет высоты светлого слоя жидкости
5.3 Расчет коэффициентов массоотдачи
5.4 Расчет числа тарелок абсорбера
5.5 Выбор расстояния между
тарелками и определение
6. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
6.1 Расчет гидравлического
сопротивления тарелок
6.2 Расчет и выбор штуцеров
7. ЛИТЕРАТУРА
1.РЕФЕРАТ
Ключевые слова: УСТАНОВКА, АБСОРБЦИЯ, КОЛОННА, РАСЧЕТ, ТЕХНОЛОГИЯ, АММИАК, ТАРЕЛКА.
В общей части обсуждены современные методы извлечения компонентов из газовых смесей. Принята абсорбционная установка непрерывного действия для очистки воздуха от аммиака производительностью 1.916м3/с. С начальным содержанием NH3 8.7% об. Выбраны основные технологические параметры процесса. Принята конструкция тарельчатой абсорбционной колонны с ситчатыми тарелками.
В технологическом расчете определены материальные потоки системы.
В конструктивном расчете определены основные конструктивные размеры колонны, обеспечивающие заданную степень разделения.
В гидравлическом расчете определено гидравлическое сопротивление колонны.
2.ВВЕДЕНИЕ
В данном курсовом проекте происходит абсорбция аммиака, из воздушной смеси, водой. В результате, на выходе из абсорбера, получается так называемый нашатырный спирт (аммиачная вода), широко используемый как в промышленности, так и в народном хозяйстве.
АММИАК (от греч. hals ammoniakos — нашатырь), NH3, бесцветный газ с резким удушливым запахом; плотность 0,681г/см3 (-33,35 °С), tпл = –77,7 °С, tкип = –33,35 °С, ∆Н =23,27 кДж/моль, ∆Н =45,94 кДж/моль, ∆S =192,66 Дж/моль∙К,при давлении 0,9 МПа сжижается при комнатной температуре. Хорошо растворим в воде; водный раствор — нашатырный спирт. Получают каталитическим синтезом из азота и водорода под давлением.
Основной промышленный способ получения NH3- по реакции:
1/2N2 + 3/2Н2 →NH3
Сдвиг равновесия вправо способствует повышение давления и понижения температуры. Тепловой эффект реакции при 29,4 МПа составляет 52,38 кДж/моль. Процесс проводят в присутствии катализатора – Fe, активированного K2O;Al2O3;CaO и др.
Каталитические яды –
сернистые и
;
Где W - наблюдаемая скорость процесса, равная разности скоростей оюразования и разложения NH3,
k1 и k2 – константы скорости
образования и разложения
, и - парциальное давление соответствующих газов α=0,5 для большинства промышленных катализаторов.
Применяют аммиак в производстве HNO3, мочевины, NH4NO3; (NH4)2CO3; (NH4)2SO4., аммофоса, уротропина, как жидкие удобрения, в качестве хладагента. Мировое производство NH3 составило в 1982 около 89 млн. т, в СССР 17.76, США 14.06. СРР 3.14, Франции 1.9, Японии 2.01, ФРГ 1.92 млн. т.
Аммиачная вода –– раствор аммиака в воде. Прозрачная (иногда с желтоватым оттенком) жидкость с резким запахом, плотность 18,5–25%-ного раствора 0,930–0,910 г/см3 (15 0С); парциальное давление паров аммиака 0,1 МПа (40 0С); температура выделения твёрдой фазы от–31,3 до –53,9 0С. С возрастанием давления растворимость аммиака увеличивается, с повышением температуры уменьшается.
Применят аммиачную воду в производстве азотной кислоты, мочевины, солей аммония, аммофоса, уротропина и т.д Жидкий аммиак — хладагент, высококонцентрированное удобрение.
При содержании в воздухе
0,5% по объёму аммиак сильно раздражает
слизистые оболочки. При остром отравлении
поражаются глаза и дыхательные
пути, при хронических отравлениях
наблюдаются расстройство пищеварения,
катар верхних дыхательных
3. ОБЩАЯ ЧАСТЬ
3.1 Способы очистки промышленных газов от газообразных примесей
Примеси, содержащиеся в отходящих промышленных газах в газо- или парообразном состоянии, извлекаются путем поглощения их жидкостями (абсорбция ) или твердыми поглотителями (адсорбция), а также путем каталитического окисления или сжигания.
Если не требуется особо
тонкой очистки промышленного газа
от примесей, то, как правило, используют
абсорбцию. Абсорбцией называется процесс
поглощения газа или пара жидким поглотителем
(абсорбентом). Обратный процесс –
выделение поглощенного газа из поглотителя
– называется десорбцией. В промышленности
абсорбция с последующей
В некоторых случаях десорбцию не проводят, если извлекаемый компонент и поглотитель являются дешевыми или отбросными продуктами или если в результате абсорбции получается готовый продукт (например, соляная кислота при абсорбции НСl водой).
3.2 Физические основы процесса абсорбции
Растворимость газов зависит
от свойств газа и жидкости, от температуры
и парциального давления растворяющегося
газа в газовой смеси. Зависимость
между растворимостью газа и его
парциальным давлением
Р = ЕХ, [3.2.1]
Где Р - парциальное давление газа над раствором мм. Рт. Ст.;
Х- концентрация газа в мольных долях;
Е - коэффициент Генри, зависящий от температуры и от природы газа и жидкости.
Значение Р и Х удовлетворяющее уравнениям имеют место при достижении равновесия между фазами, эти следует рассматривать как равновесные. Коэффициент Е зависит от природы растворяющегося вещества и температуры:
lnE = -q/RT +C; [3.2.2]
где q- теплота растворения газа, кДж/кмоль;
R-универсальная газовая постоянная, кДж/кмольос;
Т- температура растворения, оК;
С - постоянная зависящая от природы газа и жидкости.
Из равенства [3.2.2] видно, что с ростом температуры растворимость уменьшается, рис 1
Рис.1 Зависимость между растворимостью газа в жидкости и парциальным давлением.
Парциальное давление растворяемого газа, соответствующее равновесию, может быть заменено равновесной концентрацией. Согласно закону Дальтона парциальное давление компонентов в газовой смеси равно общему давлению, умноженному на мольную долю этого компонента в смеси, т. е:
р= Пу; у=Р/П;
Где П- общее давление газовой смеси;
у - концентрация разделяемого компонента;
Сопоставляя уравнения, получаем:
у=Р/П=Е/Р*Х или у=mx;
где m=Е/Р - константа фазового равновесия.
В химической технике используют следующие принципиальные схемы абсорбционных установок:- прямоточные, противоточные, одноступенчатые с рециркуляцией и много ступенчатые с рециркуляцией.
Для извлечения аммиака из воздуха используем противоточную схему (рис.2.) по этой схеме в одном конце аппарата приводится в контакт газ и жидкость, имеющие большие концентрации распределяемого вещества, а в противоположном конце меньшие.
Рис.2 Противоточная схема абсорбции
3.3 Схема абсорбционной установки
Технологическая схема процесса абсорбции водой представлена на рис.3
|
рис.3 ТЕХНОЛОГИЧЕСКАЯ СХЕМА
1.- вентилятор (газодувка);
2.- абсорбер;
3.- брызгоотбойник;
4,6.- оросители;
5.- холодильник;
7.- десорбер;
8.- куб абсорбера;
9, 13- емкость для абсорбента;
10,12- насосы;
11.- теплообменник-рекуператор.
Газ на абсорбцию подается газодувкой (или компрессором) 1 в нижнюю часть абсорбера 2, где равномерно распределяется. Абсорбент из промежуточной емкости 9 насосом 10 подается в верхнюю часть колонны и равномерно распределяется по поперечному сечению абсорбера с помощью оросителя 4,6. В колонне осуществляется противоточное взаимодействие газа и жидкости. Газ после абсорбции выходит из колонны. Абсорбент стекает в промежуточную емкость 13, откуда насосом 12 направляется на регенерацию в десорбер 7 после предварительного подогрева в теплообменнике рекуператоре 11. Десорбция абсорбента производится в кубе 8. Перед подачей на орошение колонны абсорбент, пройдя теплообменник-рекуператор 11, дополнительно охлаждается в холодильнике 5.
3.4 Устройство абсорберов
При абсорбции процесс массопередачи протекает на поверхности раздела фаз. Поэтому в аппаратах для поглощения газов жидкостями (абсорберах) должна быть создана развитая поверхность соприкосновения между газом и жидкостью.
По способу образования этой поверхности абсорбционные аппараты можно разделить на поверхностные, барботажные и распиливающие. При выборе типа абсорбера необходимо в каждом конкретном случае исходить из физико-химических условий проведения процесса с учетом технико-экономических факторов.
Исходя из агрессивности среды, можно выбрать сетчатый тип тарелок. Область применения таких тарелок для процессов, протекающих при любом давлении и стабильных режимах. Диапазон устойчивости тарелок 2.
Колоны с тарелками без сливных устройств.
В тарелки без сливных устройств газ и жидкость проходят через одни и те же отверстия или щели. На тарелке одновременно с взаимодействием жидкости и газа путем барботажа происходит сток части жидкости на нижерасположенную тарелку – "проваливание" жидкости. Поэтому тарелки такого типа обычно называются провальными. К ним относятся дырчатые, решетчатые, трубчатые и волнистые тарелки.
Гидродинамический режим работы провальных тарелок.
Эти режимы можно на основе зависимости их гидравлического сопротивления от скорости газа при постоянной плотности орошения. При малых ω жидкость на тарелке не задерживается, так как мала сила трения между фазами. С увеличением скорости газа жидкость начинает накапливаться на тарелке и газ барбатирует сквозь жидкость. В интервале скорости газа, тарела работает в нормальном режиме. При этом газ и жидкость попеременно проходят через одни и теже отверстия. Если скорость газа еще больше возрастает, то, в следствии увеличения трения между газом и жидкостью, резко увеличивается накопление жидкости на тарелке и соответственно – ее гидравлическое сопротивление, что способствует наступлению состояния захлебывания.
3.5 Выбор рабочих условий процесса
В качестве поглотителя для данного процесса используем воду данный поглотитель не агрессивный, хорошо подвергается регенерации путем нагревания, поэтому нет необходимости использовать ингибиторы для предотвращения коррозии.
Для поглощения аммиака водой можно использовать давление 1,013∙105Па [6] так, как аммиак очень хорошо растворим в воде. Поэтому при данном давлении происходит полное улавливание аммиака, уменьшаются геометрические размеры аппаратов и оно является наиболее оптимальным, т.е. затраты на его создание эквивалентны степени очистки и количеству полученного в ходе процесса аммиака. Тогда при 18оС и Р=1,013∙10 5Па или 1 атм. Коэффициент распределения составит:
Где для системы - NH3 - H2O при 33оС.
P - давление процесса, Па
4. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ
4.1 Материальный Баланс
Проведем пересчет концентраций
и нагрузок по фазам в выбранную
для расчета размерность[4.1.1]
, [4.1.1]
Где — мольная доля аммиака в газе на входе в абсорбер, ;
— мольная масса аммиака,
— мольная масса воздуха, ;
Конечная концентрация аммиака в газе рассчитывается из регламентированной степени улавливания по формуле[4.1.2]
На основании технико-
— коэффициент избытка
С учетом заданной степени регенерации абсорбера , определим концентрацию аммиака в регенерированном поглотителе по Ур-нию:[4.1.4]
Проверим, не противоречат выбранные условия параметрам процесса.
где - движущая сила процесса низа колонны, кг/кг;
где -движущая сила процесса верха колонны, кг/кг;
кг/кг;
Условие выполняется.
Рассчитаем массовый расход инертной части газа.[4.1.5]
[4.1.5]
где G- массовый расход инертной части газа, кг/с;
Vо- объемный расход газа, м3/с;
-средняя плотность инертной
Определим плотность инертной части газа.[4.1.6]
[4.1.6]
где -плотность воздуха при нормальных условиях, кг/м3;
- объемная массовая
Оприделим массовую концентрацию в воздухе:[4.1.7]
[4.1.7]
кг/м3;
здесь кг/м3;
Тогда:
кг/м3;
кг/с;
Производительность абсорбера по поглощаемому компоненту:[4.1.8]
кг/с; [4.1.8]
Определим расход поглотителя:[4.1.9]
кг/с; [4.1.9]
Тогда соотношение расходов фаз или удельный расход поглотителя определяется:[4.1.10]
кг/кг [4.1.10]
Расходы поглощающей смеси на входе и выходе абсорбера, соответственно Lсм.н Lсм.к, определяются выражениями:
кг смеси/с;
кг смеси/с;
Расходы газовой смеси на входе и выходе абсорбера, соответственно Gсм.н и Gсм.к, будут:
кг смеси/с;
кг смеси/с;
4.2 Расчет средней движущей силы процесса
Движущую силу процесса определяем по формуле:[4.2.1]
[4.2.1]
где - средняя движущая сила процесса, кг/кг;
- большая и меньшая движущие силы процесса соответственно, кг/кг;
Присваиваем :
кг/кг; кг/кг;
кг/кг;
5. КОНСТРУКТИВНЫЙ РАСЧЕТ
5.1 Расчет скорости газа и диаметра абсорбера
Скорость газа в интервале устойчивости раборы провальных тарелок может быть оприделена с помощью уравнения [5.1.1]
[5.1.1]
Выбираем сетчатую провальную тарелку со свободным сечением Fс=0,2 и ширенной щели δ=6мм; при этом dє=2δ=2*0,006=0,012м.
В – коэффициент, равный 2,95 для нижнего и 10 верхнего пределов работы тарелки. Наиболее интенсивный режим работы тарелок соответствует верхнему пределу, когда В=10 однако с учетом возможного колебания нагрузок по газу принимают В=6-8. Приняв коэффициент В=8, получим: