Автор работы: Пользователь скрыл имя, 15 Сентября 2014 в 17:24, курсовая работа
Целью данной работы является изучение внутреннего состава Земли и модели Буллена.
Задачи работы состоят в рассмотрении внутреннего строения Земли:
Кора Земли
Мантия Земли
Ядро Земли
а также рассмотреть модель строения нашей планеты, созданную с помощью выделения главнейших границ в теле Земли по характеру изменения скоростей распространения упругих волн К. Булленом (1956), а затем Б. Гутенбергом (1963).
Введение 3
Общая структура планеты Земля 3
Кора Земли 3
Океаническая кора 3
Континентальная кора 3
Состав верхней континентальной коры 3
Граница между верхней и нижней корой 3
Мантия Земли 3
Ядро Земли 3
Модель Буллена 3
Заключение 3
Литература 3
Министерство образования и науки РФ
Федеральное агентство по образованию
НИ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра прикладной геологии
Курсовая работа
На тему
Строение Земли. Модель Буллена
Выполнил:
Студент группы НДб-11-1
Мамонтов И.А.
Проверила профессор:
Рапацкая Л.А.
Иркутск 2011
Содержание
Создание модели внутреннего строения Земли - одно из самых больших достижений науки XX столетия. Конечно, создавались модели и раньше. Но они основывались на догадках и на сравнительно небольшом количестве достоверных фактов. Больше было предположений. Нельзя сказать, чтобы сегодня все в строении Земли было бы ученым ясно и понятно. Недра таят огромный запас загадок. Но в принципе, я думаю, можно сказать, что современная модель уже вряд ли когда-нибудь существенно изменится так, как менялись модели прошлых, например, веков.
Но как же удалось построить ее ученым? Может быть, люди прорыли шахту до центра земли и исследовали каждый метр глубины? Такую работу не то что проделать - представить себе невозможно. Нам бы еще многие годы пришлось гадать о строении недр, если бы к середине прошлого столетия не наметился новый подход к проблеме.
Целью данной работы является изучение внутреннего состава Земли и модели Буллена.
Задачи работы состоят в рассмотрении внутреннего строения Земли:
а также рассмотреть модель строения нашей планеты, созданную с помощью выделения главнейших границ в теле Земли по характеру изменения скоростей распространения упругих волн К. Булленом (1956), а затем Б. Гутенбергом (1963).
Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии),и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая. Внутренняя теплота планеты, скорее всего, обеспечивается радиоактивным распадом изотопов калия-40, урана-238 и тория-232. У всех трёх элементов период полу - распада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 7 000 К, а давление может достигать 360 Г Па (3,6 млн. атм.) Часть тепловой энергии ядра передаётся к земной коре посредством плюмов . Плюмы приводят к появлению горячих точек и траппов
Земная кора́ — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, или сокращённо Мохо, на которой происходит резкое увеличение скоростей сейсмических волн. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.
Кора есть на большинстве планет земной группы, Луне и многих спутниках планет-гигантов. В большинстве случаев она состоит из базальтов. Земля уникальна тем, что обладает корой двух типов: континентальной и океанической.
Масса земной коры оценивается в 2,8×1019 тонн (из них 21 % — океаническая кора и 79 % — континентальная). Кора составляет лишь 0,473 % общей массы Земли.
Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней эрой.
Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.
В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 120-130 километров. Средняя толщина земной коры от 5 до 70 км.
Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.
Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 25% — на кремний. Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba — составляют 99,8 % массы земной коры.
Определение состава верхней континентальной коры стало одной из первых задач, которую взялась решать молодая наука геохимия. Собственно из попыток решения этой задачи и появилась геохимия. Эта задача весьма сложна, поскольку земная кора состоит из множества пород разнообразного состава. Даже в пределах одного геологического тела состав пород может сильно варьировать. В разных районах могут быть распространены совершенно разные типы пород. В свете всего этого и возникла задача определения общего, среднего состава той части земной коры, что выходит на поверхность на континентах. С другой стороны, сразу же возник вопрос о содержательности этого термина.
Первая оценка состава верхней земной коры была сделана Кларком. Кларк был сотрудником геологической службы США и занимался химическим анализом горных пород. После многих лет аналитических работ, он обобщил результаты анализов и рассчитал средний состав пород. Он предположил, что многие тысячи образцов, по сути, случайно отобранных, отражают средний состав земной коры (см. Кларки элементов). Эта работа Кларка вызвала фурор в научном сообществе. Она подверглась жёсткой критике, так как многие исследователи сравнивали такой способ с получением «средней температуры по больнице, включая морг». Другие исследователи считали, что этот метод подходит для такого разнородного объекта, каким является земная кора. Полученный Кларком состав земной коры был близок к граниту.
Следующую попытку определить средний состав земной коры предпринял Виктор Гольдшмидт. Он сделал предположение, что ледник, двигающийся по континентальной коре, соскребает все выходящие на поверхность породы, смешивает их. В результате породы, отлагающиеся в результате ледниковой эрозии, отражают состав средней континентальной коры. Гольдшмидт проанализировал состав ленточных глин, отлагавшихся в Балтийском море во время последнего оледенения. Их состав оказался удивительно близок к среднему составу, полученному Кларком. Совпадение оценок, полученных столь разными методами, стало сильным подтверждением геохимических методов.Впоследствии определением состава континентальной коры занимались многие исследователи. Широкое научное признание получили оценки Виноградова, Ведеполя, Ронова и Ярошевского.Некоторые новые попытки определения состава континентальной коры строятся на разделении её на части, сформированные в различных геодинамических обстановках.
Для изучения строения земной коры применяются косвенные геохимические и геофизические методы, но непосредственные данные можно получить в результате глубинного бурения. При проведении научного глубинного бурения часто ставится вопрос о природе границы между верхней (гранитной) и нижней (базальтовой) континентальной корой. Для изучения этого вопроса в СССР была пробурена Саатлинская скважина. В районе бурения наблюдалась гравитационная аномалия, которую связывали с выступом фундамента. Но бурение показало, что под скважиной находится интрузивный массив. При бурении Кольской сверхглубокой скважины граница Конрада также не была достигнута. Недавно в печати обсуждалась возможность проникновения к границе Мохоровичича и в верхнюю мантию с помощью самопогружающихся вольфрамовых капсул, обогреваемых теплом распадающихся радионуклидов.
Мантия — это силикатная оболочка Земли, сложенная преимущественно перидотитами — породами, состоящими из силикатов магния, железа, кальция и др. Частичное плавление мантийных пород порождает базальтовые и им подобные расплавы, формирующие при подъёме к поверхности земную кору. Мантия составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5—70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км. Мантия расположена в огромном диапазоне глубин, и с увеличением давления в веществе происходят фазовые переходы, при которых минералы приобретают всё более плотную структуру. Наиболее значительное превращение происходит на глубине 660 километров. Термодинамика этого фазового перехода такова, что мантийное вещество ниже этой границы не может проникнуть через неё, и наоборот. Выше границы 660 километров находится верхняя мантия, а ниже, соответственно, нижняя. Эти две части мантии имеют различный состав и физические свойства. Хотя сведения о составе нижней мантии ограничены, и число прямых данных весьма невелико, можно уверенно утверждать, что её состав со времён формирования Земли изменился значительно меньше, чем верхней мантии, породившей земную кору. Теплоперенос в мантии происходит путём медленной конвекции, посредством пластической деформации минералов. Скорости движения вещества при мантийной конвекции составляют порядка нескольких сантиметров в год. Эта конвекция приводит в движение литосферные плиты. Конвекция в верхней мантии происходит раздельно. Существуют модели, которые предполагают ещё более сложную структуру конвекции
Рис. 3 земная кора, мантия, внешнее ядро, внутреннее ядро.
Ядро — центральная, наиболее глубокая часть Земли, геосфера, находящаяся под мантией и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3,5 тыс. км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяется переходная зона.
Ученым известно, что жидкое внешнее ядро Земли состоит в основном из железа, но считается, что в состав входит небольшое количество некоторых других элементов.
Согласно современным моделям, внешнее ядро Земли помимо железа содержит небольшое количество так называемых легких элементов, возможно, серы, кислорода, кремния, углерода или водорода.
Внутреннее ядро Земли представляет собой шар из твёрдого железа размером с Луну. Внутреннее ядро растёт со скоростью около 1 мм в год, по мере того как железо охлаждается и кристаллизуется.
Температура в центре ядра Земли достигает 5000 С, плотность около 12,5 т/м³, давление до 361 ГПа. Масса ядра — 1,932×1024 кг.
Глубина км |
Слой |
Плотность г/см |
0—60 |
Литосфера (местами варьируется от 5 до 200 км |
- |
0-35 |
Кора (местами варьируется от 5 до 70 км) |
2,2-2,9 |
35-60 |
Самая верхняя часть мантии |
3,4-4,4 |
35-2890 |
Мантия |
3,4-5,6 |
100-700 |
Астеносфера |
- |
2890-5100 |
Внешнее ядро |
9,9-12,2 |
5100-6378 |
Внутреннее ядро |
12,8-13,1 |
Тепло, покидающее ядро, попадает в мантию и затем в кору. Мантия, нагретая ядром, поднимается ближе к поверхности, тогда как её более холодные слои опускаются. Эта конвекция запускает геодинамо и в сочетании с вращением Земли генерирует магнитное поле.
Планета Земля состоит из тонкой твердой оболочки (кора толщиной 10–100 км), окруженной мощной водной гидросферой и плотной атмосферой. Недра Земли разделяются на три основных области: кору, мантию и ядро. Кора Земли представляет собою верхнюю часть твердой оболочки Земли толщиной от одного (под океанами) до нескольких десятков км. (под материками). Она состоит из осадочных слоев и хорошо известных минералов и горных пород. Более глубокие ее слои состоят из различных базальтов. Под корой находится твердый силикатный слой (предположительно из оливина), называемый мантией, толщиной 1–3 тыс. км, он окружает жидкую часть ядра, центральная часть которого диаметром около 2000 км твердая.