Основные физико-механические свойства горных пород, необходимые для проектирования и строительства. Методы определения абсолютного и отн

Автор работы: Пользователь скрыл имя, 06 Апреля 2014 в 10:31, курсовая работа

Краткое описание

Инженерная геология - отрасль геологии, изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех. процессов и явлений, возникающих при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

Прикрепленные файлы: 1 файл

ами.docx

— 87.70 Кб (Скачать документ)

Основные физико-механические свойства горных пород, необходимые для проектирования и строительства. Методы определения абсолютного и относительного возраста пород

Королев Илья Николаевич

1. Объясните значение инженерной  геологии для промышленного и  гражданского строительства

Инженерная геология - отрасль геологии, изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех. процессов и явлений, возникающих при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

Трудно переоценить значение инженерно-геологических изысканий для строительства любого по величине и значимости сооружения. Дороже становится дом, возведенный на недостаточно исследованном участке. Ведь под зданием могут оказаться подземные воды, торф, просадочные грунты. В результате - “кривые” стены, трещины, сырость и плесень в подвалах и прочее, что приносит определенные сложности при эксплуатации зданий. Вода способствует растворяемости различных химических соединений, в том числе и агрессивных, что приводит к неблагоприятному воздействию на цементный раствор, каменную кладку, бетон. И хотя процесс разрушения фундамента незаметен, его последствия ощутимо сказываются на здании: нарушается целостность несущих конструкций, плесень и грибок проникают через подвал на верхние этажи и “заражают” в конце концов, весь дом. Дверные коробки и оконные рамы деформируются, что становится причиной появления щелей и зазоров, через которые дом начинает ускоренно терять тепло. Паркет или любое другое напольное покрытие под воздействием сырости коробится. Ремонт становится неотвратимым. А он влечет новые затраты, причем без гарантии, что восстановительные процессы не придется повторять снова и снова. Все это, в большинстве своем, возможно лишь при некачественной или несвоевременной оценке инженерно-геологических условий стройплощадки.

Инженерно-геологические изыскания для строительства обеспечивают комплексное изучение природных и техногенных условий территории (региона, района, площадки, участка, трассы) объектов строительства, составление прогнозов взаимодействия этих объектов с окружающей средой, обоснование их инженерной защиты и безопасных условий жизни населения. На основе материалов инженерных изысканий для строительства осуществляется разработка предпроектной документации, в том числе градостроительной документации и обоснований инвестиций в строительство, проектов и рабочей документации строительства предприятий, зданий и сооружений, включая расширение, реконструкцию, техническое перевооружение, эксплуатацию и ликвидацию объектов, ведение государственных кадастров и информационных систем поселений, а также рекомендаций для принятия экономически, технически, социально и экологически обоснованных проектных решений.

Топографо-геологические изыскания. Наличие материалов инженерно-геологических и геодезических изысканий на площадке проектируемого дома позволяет избежать многих ошибок проектирования, строения и прокладки наружных инженерных систем: правильно расположить все строения на отведенном участке, вспомогательные помещения внутри коттеджа, которые требуют подачи воды и отвода хозфекальных стоков, организовать отвод поверхностных вод с учетом рельефа местности.

При обустройстве автономного источника водоснабжения (колодец или скважина) и местных очистных сооружений без инженерно-геодезических и гидрогеологических изысканий просто нельзя обойтись. Изыскания проводят для определения несущих характеристик грунтов, состава и уровня грунтовых вод. Характер грунта на участке диктует конструктивное устройство фундамента, возможность устройства подвала, способ прокладки коммуникаций, тип очистных сооружений и в целом влияет на экономичность строительства.

Геологические работы включают:

- бурение;

- отбор проб грунта и воды (на постройку здания – от 2 до 6 скважин различной глубины  в зависимости от габаритов  здания и состава грунтов);

- лабораторные испытания;

- составление отчета с рекомендациями  по типу фундаментов, способам  прокладки коммуникаций и мероприятиям  по их защите.

При исследовании грунта учитываются следующие основные показатели:

- пучинистость, то ест сила, с  которой грунт при воздействии  отрицательных температур будет  выталкивать из себя фундамент, трубы и заглубленные очистные  сооружения. На основе полученных  данных прогнозируют допустимую  деформацию инженерных сооружений  и, соответственно, выбирают материалы, способы строительства и обустройства  систем;

- водонасыщенность, то есть уровень  грунтовых вод. Знание этого показателя  помогает, во-первых, определить глубину  будущего колодца или частной  скважины и, во-вторых, позволяет  прогнозировать устойчивость строения  и проложенных коммуникаций;

- агрессивность вышетоящих грунтовых вод: в случае высокой концентрации некоторых химических соединений приходится использовать специальные марки бетона и думать о специальной защите труб и кабелей.

Неразумно строить или реконструировать сооружение, не зная точно геологического строения участка (на каких грунтах будет монтироваться фундамент, физико-механических характеристик и несущей способности грунтов под нагрузкой, их коррозионной активности, режима подземных вод и т.д. и т.п.), а, следовательно - какую выбрать конструкцию и глубину заложения фундамента. Одни и те же грунты ведут себя по разному в результате обводнения или промерзания, серьезно меняют свои прочностные характеристики в результате разрушения их природной структуры и влажности.

Строительные нормы и правила устанавливают основные положения по определению опасных природных воздействий, вызывающих проявления и (или) активизацию природных процессов, учитываемых при разработке предпроектной документации (обосновании инвестиций в строительство объектов, схем и проектов районной планировки, генеральных планов городов, поселков и сельских поселений и другой документации), технико-экономических обоснований и рабочей документации на строительство зданий и сооружений, а также схем (проектов) их инженерной защиты.

2. Опишите минерал биотит и  породы: опока, мергель, мрамор, отвечая  на вопросы, помещенные в примечаниях  к этим таблицам.

Биотит - минерал из группы слюд. По структуре относится к слоистым алюмосиликатам. Химическая формула K (Mg, Fe)3AlSi3 O10(OH, F)2. Химический состав весьма изменчив: окись калия (К2О) 4,5 — 8,5%, окись магния (MgO) 0,3 — 28%, закись железа (FeO) 2,8 — 27,5%, окись железа (Fе2О3) 0,3— 20,5%, окись алюминия (Аl2О3) 9,5 — 31,5%, окись кремния (SiO2) 33 — 45%, вода (H2O) 6 — 11,5%. Цвет в тонких листочках от черновато-бурого до буро-зелёного. Биотит является важным породообразующим минералом гранитов, трахитов. Реже встречается в более основных и очень редко в основных породах (базальты). Широко распространён в пегматитах. Во многих метаморфических породах (контактовые роговики, слюдяные сланцы, парагнейсы, ортогнейсы) встречается в виде мелкочешуйчатых, иногда плотных шлировых выделений. Распространен повсеместно. Практически во всех кислых магматических (граниты, гранодиориты и др.) и метаморфических (гнейсы, сланцы) Наиболее крупные кристаллы достигают 1—1,5 м, встречаются в пегматитовых жилах. Биотит применяют в малоответственных электроизоляционных изделиях, порошок его также идёт на изготовление бронзовой краски.

Опока относится к осадочным породам смешанного происхождения, к глинисто-кремнистой группе пород. Легкая, твердая, микропористая. От мергеля отличается отсутствием извести, поэтому не вскипает с HCl.

Опоки сложены тонкозернистым опалом, содержание которого достигает 85-90 %. Обычно в опоках почти отсутствуют частицы свыше 0,1 мм, а частиц, которые меньше этой величины, содержится более 70-80 %. Рядом промежуточных типов опоки связаны с глинистыми и песчаными породами.

Типичные опоки имеют желто-серый и светло серый цвет, для более плотных оркемнелых разностей характерна более темная (темно-серая) окраска. Практически во всех разностях опок обнаруживается раковистый излом.

Общими инженерно-геологическими особенностями опок являются: 1) высокая пористость; 2) большая влагоемкость; 3) сравнительно высокая прочность в сухом состоянии и значительное ее падение при водонасыщении; 4) слабая морозоустойчивость.

Характерной чертой опок является именно их чрезвычайно слабая морозоустойчивость. Уже после 2-4 циклов попеременного замораживания и оттаивания образцы разрушаются. Это может быть объяснено лишь большой влагоемкостью опок (до 50-70%). Кроме того, нужно отметить, что хотя поры в опоках открытые и сообщаются друг с другом, водопроницаемость опок ничтожна (возникающий в опоках естественного отложения коэффициент фильтрации, равный 5 м/сут.), связан исключительно с трещиноватостью пород массива.

Мергель относится к осадочным породам смешанного происхождения, к глинисто-карбонатной группе пород. Бурно вскипает с CHl, на месте капли оставляет пятно грязи. Цвет разнообразный и зависит от цвета глинистой примеси. Порода плотная, нередко слоистая. Состоит из смеси кальцита с глиной (глины 30-50 %)

Это известково-глинистая порода, у которой глинистые частицы сцементированы карбонатным материалом. Распределение глинистого и карбонатного вещества в мергеле чаще всего равномерное. Обычно под мергелем понимают такую породу, у которой содержание CaCO3 колеблется в пределах 25-30 %. При большом содержании CaCO3 порода получает название мергелистый известняк, а при меньшем – глинистый мергель. Эти типы пород связывают мергель, с одной стороны, с известняком, с другой – с глинами. Мергель способен набухать благодаря содержащемуся в нем глинистому веществу, при этом все мелкие трещины, по которым возможна циркуляция воды, закрываются и тем самым прекращается фильтрация воды сквозь мергелистые толщи. Набухание мергеля главным образом зависит от соотношения в породе карбонатной и глинистой составляющих.

Физико-механические свойства мергелей в связи с содержанием карбонатов и степени их дисперсности определяются в весьма широком диапазоне измерения. На природных скосах и откосах искусственных выемок мергели быстро выветриваются, разрушаются, формируя весьма подвижные плитчатые осыпи. Мергель, в связи с уникальностью состава (карбонаты + глина), практически без дополнительного обогащения, дает возможность использовать его в качестве природного сырья для производства цемента.

Мрамор является представителем карбонатно-метаморфических пород, которые могут образовываться как при региональным, так и при контактовом метаморфизме. Главным здесь является наличие среди факторов значительных температур и давлений. Минеральный состав: кальцит, иногда примесь доломита, кварца, полевого шпата. Мрамор - перекристаллизовавшийся известняк, в котором между кристаллическими зернами имеется непосредственная связь. Структура кристаллически-зернистая, текстура массивная. Цвет разнообразен. При действии HCl вскипает. Структура и текстура мраморов диктует их физические и механические свойства. Среднезернистые массивные мраморы, например, из бассейна реки Амур характеризуются прочностью на сжатие в среднем 115 МПа, которая после водонасыщения снижается до 80 МПа, а после испытаний на морозостойкость падает до 70 МПа. Мелкозернистые доломитизированные мраморы достигали прочности 200 МПа и более. В то же время крупнозернистые «сахаровидные» разности мраморов имеют прочность, не превышающую 50-60 МПа. Отличительной чертой мраморов среди метаморфических пород является их слабая растворимость в воде, которая содержит углекислоту. Это определяет значительно меньшую закарстованность мраморных массивов, чем в толщах, сложенных известняками или доломитами. Мрамор довольно устойчив к «обычному» выветриванию, сохраняет крутые, вплоть до «отвесных», природные склоны.

3. Назовите основные физико-механические  свойства горных пород, необходимые  для проектирования и строительства. Опишите условия образования  и строительные свойства морских грунтовых отложений

Основные физико-механические свойства горных пород

Показатели физических и механических свойств скальных и нескальных грунтов между собой довольно значительно разнятся, особенно физические. Характеристики физических свойств выражают физическое состояние грунтов (плотность, влажность и др.) и позволяют их классифицировать по типу, виду и разновидностям. Под механическими подразумевают такие свойства, которые появляются в грунтах под воздействием внешних усилий (давлении, удара.).

Для решения задач проектирования зданий и сооружений все физико-механические характеристики грунтовых оснований разделяют на две группы:

1) показатели физико-механических  свойств, которые используют непосредственно  в расчетах оснований;

2) вспомогательные показатели, с  помощью которых осуществляют  классификацию грунтов, прогнозируются  механические характеристики первой  группы, выделяют инженерно-геологические  элементы в толще грунтов

Характеристики физико-механических свойств используемых в расчетах оснований

Прочность грунта оценивается максимальной нагрузкой, приложенной к нему в момент разрушения (потери сплошности). Эта характеристика называется пределом прочности Rc измеряется в МПа, или временным сопротивлением сжатию.

На прочность грунтов влияют: минеральный состав, характер структурных связей, трещиноватость, степень выветрелости, степень размягчаемости в воде. Для нескальных грунтов другой важной характеристикой прочности является сопротивление сдвигу. Определение этого показателя необходимо для расчета устойчивости оснований, а так же для оценки устойчивости грунтов в откосах строительных котлованов, расчета давления грунта на подпорные стены и т. д. Сопротивление сдвигу оценивается силами внутреннего сдвига φ измеряется в градусах, сцепления C, кПа. Под первыми понимают силы сопротивления, которые возникают между соприкасающимися друг с другом частями грунта, а под вторым – сопротивление структурных связей грунта всякому перемещению слагающих частиц.

Для практических расчетов по деформациям и несущей способности грунтов применяются показатели удельного сопротивление C, кПа, φ, град. Сдвиговые характеристики определяют полевыми работами (срез целиком грунта, вращательный срез, зондирование) и лабораторными исследованиями в приборе плоского среза (стабилометре)

Информация о работе Основные физико-механические свойства горных пород, необходимые для проектирования и строительства. Методы определения абсолютного и отн